Search our bibliography using the filters on the right-hand side.
Displaying 1 through 3 of 3 publications.
Kluge F, Brand YE, Mico-Amigo ME, Bertuletti S, D'Ascanio I, Gazit E, Bonci T, Kirk C, Kuderle A, Palmerini L, Paraschiv-Ionescu A, Salis F, Soltani A, Ullrich M, Alcock L, Aminian K, Becker C, Brown P, Buekers J, Carsin AE, Caruso M, Caulfield B, Cereatti A, Chiari L, Echevarria C, Eskofier B, Evers J, Garcia-Aymerich J, Hache T, Hansen C, Hausdorff JM, Hiden H, Hume E, Keogh A, Koch S, Maetzler W, Megaritis D, Niessen M, Perlman O, Schwickert L, Scott K, Sharrack B, Singleton D, Vereijken B, Vogiatzis I, Yarnall A, Rochester L, Mazza C, Del Din S, Mueller A. Real-world gait detection using a wrist-worn inertial sensor: validation study. JMIR Form Res. 2024 May 1;8:e50035. doi: 10.2196/50035
Romijnders R, Salis F, Hansen C, Kuderle A, Paraschiv-Ionescu A, Cereatti A, Alcock L, Aminian K, Becker C, Bertuletti S, Bonci T, Brown P, Buckley E, Cantu A, Carsin AE, Caruso M, Caulfield B, Chiari L, D'Ascanio I, Del Din S, Eskofier B, Fernstad SJ, Frohlich MS, Garcia Aymerich J, Gazit E, Hausdorff JM, Hiden H, Hume E, Keogh A, Kirk C, Kluge F, Koch S, Mazza C, Megaritis D, Mico-Amigo E, Muller A, Palmerini L, Rochester L, Schwickert L, Scott K, Sharrack B, Singleton D, Soltani A, Ullrich M, Vereijken B, Vogiatzis I, Yarnall A, Schmidt G, Maetzler W. Ecological validity of a deep learning algorithm to detect gait events from real-life walking bouts in mobility-limiting diseases. Front Nuerol. 2023 Oct 16;14:1247532. doi: 10.3389/fneur.2023.1247532