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QUANTITATIVE CHALLENGES FACING PATIENT-
CENTERED OUTCOMES RESEARCH 
 
PURPOSE 
Patient-centered outcomes researchers collect data from patients and caregivers that can be used to guide 
healthcare decisions and improve healthcare delivery and outcomes. This workshop presents challenges 
associated with conducting quantitative data analysis of patient-centered data. At the end of the workshop, 
participants will have a better understanding of these analytical challenges and available approaches to 
successfully overcome them. 
DESCRIPTION 
Topic 1: Heterogeneity in patient-centered outcomes often translates into multidimensionality in data 
analysis. Different languages and cultures also contribute to heterogeneity of patient-centered outcomes that 
may lead to bias results. Methods to explore dimensionality and differential item functioning (DIF) are 
presented, including available software and programs. 
Topic 2: Insufficient sample size may lead to large measurement errors or nonconvergent models. Too large 
of a sample size overpowers tests of significance. Recommendations for sample size when evaluating 
patient-centered measures are discussed. Rules of thumb for commonly used psychometric analyses, to 
ensure appropriate statistical inferences, are presented. 
Topic 3: Missing data are inevitable, but non-random missing or skip-pattern questions by design may lead to 
bias and incorrect results. Patterns of missing data should be investigated with respect to demographics, 
disease severity, and study arms. A case study of a pattern-mixture model is used to identify groups of 
subjects with similar missing data patterns. 
Topic 4: Low response rates are typically non-random and can threaten generalizability of results. Options for 
maximizing response rate and minimizing respondent burden, including use of IRT-based tools (short forms 
and computer adaptive tests) and multiple assessment platforms (hand-held devices such as tablets and 
smart phones) will be discussed. 
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       Multidimensionality 

• Many patient-reported outcome (PRO) measures 
are multidimensional in nature  
– The EuroQoL 5 Dimensions Questionnaire (EQ-5D) 
–  SF-36 
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       Concept of Interest Measured by Multiple Items 
 
• Multiple variables (items) allow us to tap into more of the 

concept of interest (COI) in terms of content and to 
increase reliability, but… 

• You have to make sense of all variables 
– How do they relate to one another and the COI? 

 
Concept(s) of Interest 

 
 
 
 
 
 

Item 4 

Item 3 Item 5 

Item 6 

Item7 

Item 8 
Item 2 

Item1 
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       Conceptual Framework of a PRO Measure 

• The adequacy of a proposed instrument to support a 
claim depends on the conceptual framework of the PRO 
instrument 

• The conceptual framework explicitly defines the 
concepts measured by the instrument in a diagram that 
presents a description of the relationships between 
items, domains (subconcepts), and concepts measured 
and the scores produced by a PRO instrument (FDA 
PRO Guidance, 2009) 
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       A Multidimensional Conceptual Framework 
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       Common Approaches for Assessing Dimensionality 

• Exploratory Factor Analysis (EFA): Attempts to discover 
how many factors (concepts/domains) are present and 
which variables they explain without making prior 
assumptions about the number of factors and how the 
items related to the factors 
 

• Confirmatory Factor Analysis (CFA): Tests specific, 
theory-based hypotheses or to confirm EFA results 
about how many dimensions are present and which 
variables they explain 
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       Factor Analysis 

• Summarizes the pattern of correlations among a set of observed variables 
• Variables correlated with one another but largely independent of others 

are combined into factors 
• What accounts for the pattern of correlations among these variables?  

What do they have in common?  That is, what is the “thing” the correlated 
variables are measuring? 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X1 1.00
X2 0.40 1.00
X3 0.50 0.40 1.00
X4 0.35 0.50 0.01 1.00
X5 0.07 0.05 0.50 0.30 1.00
X6 0.11 0.09 0.60 0.40 0.03 1.00
X7 0.04 0.12 0.40 0.35 0.02 0.40 1.00
X8 0.12 0.04 0.03 0.07 0.40 0.30 0.07 1.00
X9 0.09 0.11 0.06 0.05 0.50 0.40 0.50 0.40 1.00
X10 0.05 0.07 0.08 0.02 0.05 0.06 0.60 0.35 0.50 1.00
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       Example: EFA of the Center for Epidemiologic Studies 
Depression Scale 8-Items Version (CESD-8) 

• Measures of depression (CESD-8): 
– Feel depressed 
– Everything is an effort 
– Sleep is restless 
– Feel happy 
– Feel lonely 
– Enjoys life 
– Feels sad 
– Unable to get going 
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       CESD Possible Factor Structure 

F1 F2 F3 

F1 F1 F2 
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       Eigenvalues and Scree Plot 
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       CESD-8 Factor Structure Identified by EFA 

• Negative affect/depression: 
– Depressed 
– Lonely 
– Sad 

• Somatic: 
– Everything an effort 
– Sleep is restless 
– Unable to get going 

• Positive affect: 
– Happy 
– Enjoy life 
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       CESD-8 Factor Structure Identified by EFA 

NA PA SOM 

Primary 
Loadings 
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       Confirmatory Factor Analysis (CFA) 

• Confirmation of hypothesized factor structure of PRO 
measures 
– Do the results of the EFA hold up under CFA? 

• Validation of PRO measures 
– Does a PRO relate to antecedents/consequences of 

interest? 
– Can assess multiple domains of PRO measures 

simultaneously 
• Cross-validation of PRO measures 

– Is the factor structure the same for key subgroups 
(gender, race/ethnicity, age, country, 
treatment/control)? 
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       CESD-8 Factor Structure Confirmed by CFA 

depress enjoy 
life lonely sad effort sleep going happy 
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Measure-
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       Leading Factor Analysis Software 

• Mplus (most all-encompassing and rapidly becoming the 
most popular) 

• AMOS (most user-friendly) 
• EQS (one of the oldest programs; good combination of 

power and ease of use) 
• LISREL (first structural equation modeling software) 
• SAS PROC FACTOR and PROC CALIS (much 

improved from earlier releases and catching on) 
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       Differential Item Functioning (DIF) 

• Heterogeneity among patients—such as age, gender, 
education level, language, culture, etc.—is likely to 
cause differential item function (DIF) 

• DIF: Subjects from different groups (e.g., male vs. 
female) with the same latent trait (e.g., degree of 
depression) have a different probability of giving a 
certain response to an item (e.g., crying) 

• For the score to be equivalent among groups, the items 
with DIF should be removed, or the DIF items should be 
scored differently according to group membership 
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       Item Exhibits No DIF 
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       Item Exhibits DIF 
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       Example from PROMIS Pain Behavior Draft Item Bank 

PAINBE27 In the past 7 
days 

I had pain so 
bad it made me 
cry 

1 = Had no pain 
2 = Never 
3 = Rarely 
4 = Sometimes 
5 = Often 
6 = Always 

An item that exhibits DIF by gender 
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       Items With DIF 

• Assess the impact at the scale level 
• Assess the content of the item 
• Reword the item 
• Remove the item 
• Different scoring algorithms according to group 

memberships 
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       Commonly Used Methods to Detect DIF 

• Mentel-Haenszel Chi-square 
– Construct 3-fold contingency tables to compare proportion of each 

response categories between two (or more) groups 
– SAS, SPSS, R, etc. 

• Item Response Theory (IRT)-Based Methods 
– Comparing the IRT item parameter estimates between two (or more) 

groups 
– IRTLRDIF, IRTPRO 

• Rasch Model-Based Method 
– Analysis of variance on standardized residuals    
– RUMM2030 

• Logistic Regression 
– Logistic regression model to compare the odds of observing each 

response categories between two (or more) groups   
– SAS, SPSS, R, etc. 
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Sample Size Matters 
 Too large 

– Overpowered for the PRO evaluation, and conclusions are compromised 
 “Statistical significance does not equate to meaningful difference” 

26 

 Too small 
– Models may not converge 
– Underpowered, and intended evaluations are not possible  

 

cosmologybus.typepad.com 
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Sample Size Matters 
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 Just right 
– Nonprimary clinical trial analysis: 

Justification after the fact (e.g., using 
confidence intervals) and then a 
responder analysis 

– Psychometric evaluation: Justification 
and planning for the sample size 
included in the study design discussions 
and documented  
 



Sample Size: Reality 

28 

 
 
 
 
 
 
 

No matter the circumstances, the size of the sample used in the post 
hoc PRO analyses should be considered when reporting results 

For most clinical studies, the PRO 
sample size is determined by the 
analytic demands for the primary 
endpoint 
 

For psychometric evaluations of PRO 
measures, the sample size is often a 
compromise due to timeline, resources, and 
cost restrictions 
 

Note: Sample size is the number of patients completing the PRO measure  
 



Recommendation: 
For “Just Right” Sample Sizes  
 Example: Group mean differences  

– If the test for the group means is statistically significant, further support the 
PRO score differences by reporting the proportion of responders by group (if 
available) 
 Use a distribution-based estimate if not available 
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Recommendations: 
If Sample Size Is Too Large 
 Conduct the test on the full 

sample 
 Provide information on the 

proportion of responders by 
group (if available or use 
distribution-based threshold) 

 Conduct the test on multiple 
smaller subsamples (randomly 
select multiple subsamples 
using the clinical study stratum 
to sample and conduct the test) 

 Provide confidence bands or 
effect size estimates 

30 



Example:  
Clinical Trial Post Hoc PRO Analysis 
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𝑛 = 2 (100)(0.84+1.96)2
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 Sample size needed for 80% 
power and 0.05 level of 
significance is approximately 63 
per arm 

 Sample size of the clinical trial is 
250 per arm, and resulting 
power is ~100% to detect 5 
points difference in means! 

Furthermore, group mean tests ignore 
other aspects related to PRO scores: 
 Score ranges 
 Skewness 



Postherpetic Neuralgia (n=368) 

 Treatment with LYRICA 100 mg and 
200 mg three times a day statistically 
significantly improved the endpoint 
mean pain score and increased the 
proportion of patients with at least a 
50% reduction in pain score from 
baseline 

 Evaluated proposed cut scores of 
30% and 50% improvement on an 
11-point numerical pain rating scale 
to determine if three treatment 
groups differ from placebo 

Example From Lyrica 

Lyrica, 2006 Note: Positive change indicates improvement 
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Recommendations:  
If Sample Size is Too Small 
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 Report descriptive information on the PRO 
(including effect size) 

 Pool across studies (if same design, especially 
for cases with small populations such as 
orphan disease) 

 Provide support for results based on published 
information from similar studies (e.g., compare 
effect sizes or clinically meaningful 
differences) 

 Provide information on the proportion of 
responders by group (if available or use 
distribution-based threshold) 



Psychometric Evaluations: 
Recommendations for Sample Size 
 A priori state the key property for the psychometric evaluation 
 Based on the key property, justify the sample size 
 Incorporate confidence intervals for results for the secondary 

properties evaluated  

34 

Sample Size Demands 

Initial item 
performance 
evaluations 

using classical 
test theory 

 

Multidimensional 
IRT model with 
4-5 dimensions 

Construct 
validity: 

correlation 
analyses 

 

IRT 
factor 

analysis 
Rasch 

Known 
groups 

analyses 



Psychometric Evaluation:  
Sample Size Should Be Based on Key Property 
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-Additional Development post-ISPOR is underway for this content. 
Please contact lmcleod@rti.org for the current status. 

mailto:lmcleod@rti.org


“Real Life” Example 
Property n = 30 n = 50 n = 100 n = 150+ 
Cronbach’s alpha 0.88 0.89 0.87 0.87 
Construct validity 
correlation 

-0.42 
 (Less than 20) 

-0.21 
 (Based on 35) 

-0.35 -0.35 

Known groups 
effect size 

Not computed 
(Less than 10 in 
each group) 

Apprx. 0 
(Less than 20 in 
each group) 

0.47 0.37 

36 



Summary and Fine Print  
 Consider sample size when evaluating PRO measures or evaluating 

treatments using PRO measures 
 One size does not fit all 

– We have provided recommendations/                                                              
rules of thumb 

– Justify the sample size after considering                                                                             
the complexity of the PRO measure, its                                                                          
intended use, the purpose of the                                                                            
evaluation, etc. 
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Is Missing PRO Data Inevitable? 
 Missing (incomplete) data commonly occurs in 

longitudinal studies despite well-planned and carefully 
executed studies 
– Declaration of Helsinki 

 Magnitude of missingness varies 
– Trial length 
– Disease  
– Treatment 

 Types of missing 
– Scale nonresponse 
– Item nonresponse 
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How Much Data Can Be Missing: 
“Rules of Thumb” 
 Scale nonresponse  

– < 5% ignorable 
– 5%-20% may or may not impact conclusions 
– 30%-50% restrict conclusions 

 Item nonresponse 
– < 5% ignorable 
– > 10% concern 

 Seriousness of missing depends on the reasons or missing, study objective, and 
intended use 

 Data should always be inspected for missing patterns 
 Rules of thumb vary across the literature and types of missing data mechanisms 

– Missing Not at Random (MNAR) 
– Missing at random (MAR) 
– Missing Completely at Random (MCAR) 

40 

Fairclough (2010),  Capparelli (2013) 
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Missing at Random 

 P(R|Yo,Ym) 
 Can be dependent 

on missing PRO  
 Must estimate 

parameters of joint 
PRO distribution

 
 

 P(R|Yo,Ym) = P(R)   
 Can be dependent 

on observed 
covariates  

 Independent of 
observed and 
missing PRO 

   

 
 

Independence 

Model and Estimation Complexity 

Review:  
Missing Data Mechanisms 

 P(R|Yo,Ym) = P(R|Yo)   
 Can be dependent on 

observed covariates 
and PRO   

 Independent of 
missing PRO 

 
 

R = distribution of missingness (0 = not missing, 1 = missing); Yo = observed PRO; Ym = missing PRO 

No
t 
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le 
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Review: 
Impact of Missing Data Mechanisms 
 Important: Reduces power 

– A concern for rare conditions (orphan diseases) but not for overpowered, large-
scale trials 

 Most important: Can produce biased estimates and erroneous 
conclusions 
– Irrespective of sample size 
– Impacts variance estimates 
– Impacts random assignment (selection bias: subjects self-select), hence 

estimate 

42 



 
 
Prevention and Treatment of Missing 
Data in Clinical Trials 
 First line of defense: Prevention 

– PRO scale data is precious! 
– Train sites and staff extensively on data collection 
– Consider patient burden 
– Complete evaluation of enrolled patients, irrespective of 

their adherence to study therapy or protocol 
– Collect auxiliary information on reasons for 

missing/dropout 
 Last line of defense: Statistical  

43 

National Research Council (2010) 



NRC Guidelines: 
Identify Patterns of Scale Nonresponse 

44 

Pattern Baseline Week 4 Week 8 Week 
12

Week 
16

A X X

B X X X

C X X X

D X X X

E X X X X

F X X X X X



 
 
NRC Guidelines:  
Statistical Approaches 
 Scale nonresponse 

– Primary analysis: Select an analysis method with assumptions 
that are appropriate for MAR 
 Maximum likelihood estimation techniques 
 Bayesian multiple imputation 

– Secondary analysis: Select an alternative method (assuming 
MNAR) and conduct a sensitivity analysis 
 Pattern mixture models 
 Semi-parametric selection models 
 Use of auxiliary information may help MNAR approximate MAR 

– Compare results and conclusions  
 Currently no consensus on how to optimally synthesize results from the 

primary and secondary analyses 
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National Research Council (2010) 
 



 
 
Guidelines for  
Item Nonresponse in Clinical Trials 
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FDA (2009), Fairclough (2010), Capparelli, 2013  



 
 
Developers’ Algorithms 
 Objective: Preserve reliability (classical test theory concept) 
 Common approach: Single imputation 
 “Half-rule” (person mean) single imputation 

– Subjects must respond to at least half of the items (otherwise 
missing) 

– Imputed response: Mean of nonmissing (within subject) 
– Score = sum of nonmissing items and imputed responses 

 ‘Maximum response possible’ single imputation 
– Imputed response: Rescale the “worst” response option; multiply it 

by the ratio of the sum of nonmissing items to the possible total 
scale score 

– Score = sum of nonmissing responses and imputed responses 
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Fairclough (2010),  Capparelli,  2013  



Recommendations 
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-Additional Development post-ISPOR is underway 
for this content. Please contact lnelson@rti.org for 
the current status. 



PRO Missing Data Frontier  
 No data/information left behind (include missing data) 
 Unified modern (i.e., model-based and computer intensive) scale and 

item nonresponse methods for clinical trial research 
– Measurement precision of the outcome measure will automatically be included. 

Trial models continue to treat an individual’s score as if it was perfectly 
measured 

– Potentially will reduce bias and erroneous conclusions for “Treatment/No 
Treatment” high-stakes decisions 

 Together, statisticians and psychometricians have the computing and 
brain power to accomplish this 
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Overview 

• The problem 

• Leveraging modern resources to alleviate the 
problem 

• The role of ‘modern’ measurement theory 
– IRT-based assessment  

• (short forms and computer adaptive tests) 

• The role of technology and computer-based data 
collection  
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Low response rates are a threat to  
patient-centered outcomes research  

• Low response rates are typically non-random  
– Respondent fatigue or burnout 
– Irrelevant questions 
– Inconvenience 
– Lag time between recruitment and survey 

completion 
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Most approaches to handling missing data 
require assumption of MCAR or MAR 

• MCAR = Missing Completely at Random 

• MAR = Missing at Random 

• Non-random missing data is  
– Difficult to manage analytically  
– A threat to generalizability of results 

• Missing data is best avoided if at all possible!  

 



M Edelen 54  June 2014 

Modern resources can help to maximize 
response rate and minimize burden 

• Use of ‘modern’ measurement tools based on item 
response theory (IRT) can facilitate brief yet reliable 
assessment 

– short forms (SFs) and computer  
   adaptive tests (CATs)  

• Use of novel computer-based assessment 
platforms can increase convenience, reduce lag 
time, sustain attention  

– hand held devices, notepads, smart 
phones 
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IRT has several features that facilitate 
creation of short precise instruments 

• Items and scores are placed on the same 
continuum 

• The reliability of a score is a function of its location 
on the underlying measurement continuum 

• Score reliability can be calculated based on 
responses to any given item or set of items  
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IRT-based SFs and CATs  
leverage these features 

 
• SFs are typically constructed to maximize precision  

– At a given point on the measurement continuum 
(e.g., cut-score for diagnosis) 

– Across the entire continuum 

• Depending on measurement goals, different items 
will be selected for SF 

• CAT takes this one step further by tailoring the item 
administration to the individual in real time 
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CAT DEMO 

Using the PROMIS Smoking Assessment Toolkit 
Nicotine Dependence item bank 
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First item: Score = 58.9, SE = 5.8, rel=.66 
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I frequently crave cigarettes: Quite a bit 
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Second item:  score = 63.6, SE = 4.5, rel=.80 
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When I haven’t been able to smoke for a few 
hours the craving gets intolerable: Often 
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Third item:  score = 65.0, SE = 3.6, rel=.87 
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I smoke even when I am so ill that I spend 
most of the day in bed: Sometimes 
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Fourth item:  Score = 65.0, SE = 3.2, rel=.90 
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I find myself reaching for cigarettes without 
thinking about it: Often 
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CAT administration produced highly reliable 
score estimate with just four items 

Item Response Score Reliability 

I frequently crave cigarettes.  Quite a bit 58.9 0.66 

When I haven’t been able to smoke for a few 
hours, the craving gets intolerable. Often 63.6 0.80 

I smoke even when I am so ill that I spend 
most of the day in bed. Sometimes 65.0 0.87 

I find myself reaching for cigarettes without 
thinking about it. Often 65.0 0.90 
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Use of computer-based assessment opens 
up a wide variety of assessment platforms 

• Laptop “kiosk” for screening or survey 
completion in waiting room area 

• Ipad or tablet that respondent can carry 
throughout visit 

• Smartphone that respondent can take home 
– Scheduled prompts with links to survey 

• Email reminders with links to survey 

• Social media (e.g., Facebook and Twitter) for 
reminders, links and study updates to keep 
respondents involved 
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The platform can be chosen to maximize 
response rates and improve data quality 
• Make it easy and convenient for 

participants to get screened or respond 
to survey items 

• Can incorporate voice support to ensure 
comprehension 

• Can also collect additional useful data 
– Time to complete 
– GPS data 
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QUESTIONS? 

Thank you 
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