Quantitative Challenges Facing Patient-Centered Outcomes Research

ISPOR 19th Annual International Meeting
May 31-June 4, 2014
PURPOSE
Patient-centered outcomes researchers collect data from patients and caregivers that can be used to guide healthcare decisions and improve healthcare delivery and outcomes. This workshop presents challenges associated with conducting quantitative data analysis of patient-centered data. At the end of the workshop, participants will have a better understanding of these analytical challenges and available approaches to successfully overcome them.

DESCRIPTION
Topic 1: Heterogeneity in patient-centered outcomes often translates into multidimensionality in data analysis. Different languages and cultures also contribute to heterogeneity of patient-centered outcomes that may lead to bias results. Methods to explore dimensionality and differential item functioning (DIF) are presented, including available software and programs.

Topic 2: Insufficient sample size may lead to large measurement errors or nonconvergent models. Too large of a sample size overpowers tests of significance. Recommendations for sample size when evaluating patient-centered measures are discussed. Rules of thumb for commonly used psychometric analyses, to ensure appropriate statistical inferences, are presented.

Topic 3: Missing data are inevitable, but non-random missing or skip-pattern questions by design may lead to bias and incorrect results. Patterns of missing data should be investigated with respect to demographics, disease severity, and study arms. A case study of a pattern-mixture model is used to identify groups of subjects with similar missing data patterns.

Topic 4: Low response rates are typically non-random and can threaten generalizability of results. Options for maximizing response rate and minimizing respondent burden, including use of IRT-based tools (short forms and computer adaptive tests) and multiple assessment platforms (hand-held devices such as tablets and smart phones) will be discussed.
Discussion Leaders

Wen-Hung Chen, PhD
Director of Psychometrics
RTI Health Solutions
3040 Cornwallis Road
Research Triangle Park, NC 27709
1-919-248-8522
wchen@rti.org

Lori D. McLeod, PhD
Head, Psychometrics
RTI Health Solutions
3040 Cornwallis Road
Research Triangle Park, NC 27709
1-919-541-6741
lmcleod@rti.org

Lauren Nelson, PhD
Director of Psychometrics
RTI Health Solutions
3040 Cornwallis Road
Research Triangle Park, NC 27709
1-919-541-6590
lnelson@rti.org

Maria Orlando Edelen, PhD
Senior Behavioral Scientist
RAND Corporation
20 Park Plaza, Suite 920
Boston, MA 02116
1-617-338-2059 ext. 8634
Maria_Edelen@rand.org
Quantitative Challenges Facing Patient-Centered Outcomes Research

Dimensionality and Differential Item Functioning

Wen-Hung Chen
ISPOR 19th Annual International Meeting
May 31-June 4, 2014
Multidimensionality

- Many patient-reported outcome (PRO) measures are multidimensional in nature
 - The EuroQoL 5 Dimensions Questionnaire (EQ-5D)
 - SF-36
Multiple variables (items) allow us to tap into more of the concept of interest (COI) in terms of content and to increase reliability, but...

You have to make sense of all variables
 - How do they relate to one another and the COI?
Conceptual Framework of a PRO Measure

• The adequacy of a proposed instrument to support a claim depends on the conceptual framework of the PRO instrument.

• The conceptual framework explicitly defines the concepts measured by the instrument in a diagram that presents a description of the relationships between items, domains (subconcepts), and concepts measured and the scores produced by a PRO instrument (FDA PRO Guidance, 2009).
A Multidimensional Conceptual Framework

Figure 4. Diagram of the Conceptual Framework of a PRO Instrument

- Item 1
- Item 2
- Item 3
- Item 4
- Item 5
- Item 6

- Domain 1
- Domain 2

- General Concept
Common Approaches for Assessing Dimensionality

• Exploratory Factor Analysis (EFA): Attempts to discover how many factors (concepts/domains) are present and which variables they explain without making prior assumptions about the number of factors and how the items related to the factors.

• Confirmatory Factor Analysis (CFA): Tests specific, theory-based hypotheses or to confirm EFA results about how many dimensions are present and which variables they explain.
Factor Analysis

- Summarizes the pattern of correlations among a set of observed variables
- Variables correlated with one another but largely independent of others are combined into factors
- What accounts for the pattern of correlations among these variables? What do they have in common? That is, what is the “thing” the correlated variables are measuring?

<table>
<thead>
<tr>
<th></th>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>X4</th>
<th>X5</th>
<th>X6</th>
<th>X7</th>
<th>X8</th>
<th>X9</th>
<th>X10</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X2</td>
<td>0.40</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X3</td>
<td>0.50</td>
<td>0.40</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X4</td>
<td>0.35</td>
<td>0.50</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X5</td>
<td>0.07</td>
<td>0.05</td>
<td>0.50</td>
<td>0.30</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X6</td>
<td>0.11</td>
<td>0.09</td>
<td>0.60</td>
<td>0.40</td>
<td>0.03</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X7</td>
<td>0.04</td>
<td>0.12</td>
<td>0.40</td>
<td>0.35</td>
<td>0.02</td>
<td>0.40</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X8</td>
<td>0.12</td>
<td>0.04</td>
<td>0.03</td>
<td>0.07</td>
<td>0.40</td>
<td>0.30</td>
<td>0.07</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X9</td>
<td>0.09</td>
<td>0.11</td>
<td>0.06</td>
<td>0.05</td>
<td>0.50</td>
<td>0.40</td>
<td>0.50</td>
<td>0.40</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>X10</td>
<td>0.05</td>
<td>0.07</td>
<td>0.08</td>
<td>0.02</td>
<td>0.05</td>
<td>0.06</td>
<td>0.60</td>
<td>0.35</td>
<td>0.50</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Confidential Information
Example: EFA of the Center for Epidemiologic Studies Depression Scale 8-Items Version (CESD-8)

• Measures of depression (CESD-8):
 – Feel depressed
 – Everything is an effort
 – Sleep is restless
 – Feel happy
 – Feel lonely
 – Enjoys life
 – Feels sad
 – Unable to get going
CESD Possible Factor Structure
Eigenvalues and Scree Plot

Scree Plot of Eigenvalues

Pick eigenvalues prior to point where line makes final drop.
CESD-8 Factor Structure Identified by EFA

- Negative affect/depression:
 - Depressed
 - Lonely
 - Sad
- Somatic:
 - Everything an effort
 - Sleep is restless
 - Unable to get going
- Positive affect:
 - Happy
 - Enjoy life
CESD-8 Factor Structure Identified by EFA

Primary Loadings

NA
PA
SOM
Confirmatory Factor Analysis (CFA)

• Confirmation of hypothesized factor structure of PRO measures
 – Do the results of the EFA hold up under CFA?

• Validation of PRO measures
 – Does a PRO relate to antecedents/consequences of interest?
 – Can assess multiple domains of PRO measures simultaneously

• Cross-validation of PRO measures
 – Is the factor structure the same for key subgroups (gender, race/ethnicity, age, country, treatment/control)?
CESD-8 Factor Structure Confirmed by CFA

Path/Structural Model

Measurement Model

Confidential Information
Leading Factor Analysis Software

• Mplus (most all-encompassing and rapidly becoming the most popular)
• AMOS (most user-friendly)
• EQS (one of the oldest programs; good combination of power and ease of use)
• LISREL (first structural equation modeling software)
• SAS PROC FACTOR and PROC CALIS (much improved from earlier releases and catching on)
Differential Item Functioning (DIF)

• Heterogeneity among patients—such as age, gender, education level, language, culture, etc.—is likely to cause differential item function (DIF)

• DIF: Subjects from different groups (e.g., male vs. female) with the same latent trait (e.g., degree of depression) have a different probability of giving a certain response to an item (e.g., crying)

• For the score to be equivalent among groups, the items with DIF should be removed, or the DIF items should be scored differently according to group membership
Item Exhibits No DIF

Item: Descriptor for Item 9 [0009] - 2 Levels for Person Factor: GROUP

Slope: 0.51

Expected Value

Person Location (logits)

x Stable
○ Acute
Item Exhibits DIF

Item: Descriptor for Item 1 [0001] - 2 Levels for Person Factor: GROUP

Slope
0.61

- Expected Value
- Person Location (logits)

Stable
Acute
An item that exhibits DIF by gender

| PAINBE27 | In the past 7 days | I had pain so bad it made me cry | 1 = Had no pain
2 = Never
3 = Rarely
4 = Sometimes
5 = Often
6 = Always |
|----------|-------------------|---------------------------------|-----------------|
Items With DIF

- Assess the impact at the scale level
- Assess the content of the item
- Reword the item
- Remove the item
- Different scoring algorithms according to group memberships
Commonly Used Methods to Detect DIF

- **Mentel-Haenszel Chi-square**
 - Construct 3-fold contingency tables to compare proportion of each response categories between two (or more) groups
 - SAS, SPSS, R, etc.

- **Item Response Theory (IRT)-Based Methods**
 - Comparing the IRT item parameter estimates between two (or more) groups
 - IRTLRDIF, IRTPRO

- **Rasch Model-Based Method**
 - Analysis of variance on standardized residuals
 - RUMM2030

- **Logistic Regression**
 - Logistic regression model to compare the odds of observing each response categories between two (or more) groups
 - SAS, SPSS, R, etc.
Topic 2: Sample Size for Post Hoc PRO Analyses

Lori McLeod
lmcleod@rti.org
ISPOR 19th Annual International Meeting
May 31-June 4, 2014
Sample Size Matters

- Too large
 - Overpowered for the PRO evaluation, and conclusions are compromised
 - “Statistical significance does not equate to meaningful difference”

- Too small
 - Models may not converge
 - Underpowered, and intended evaluations are not possible
Sample Size Matters

- Just right
 - Nonprimary clinical trial analysis: Justification after the fact (e.g., using confidence intervals) and then a responder analysis
 - Psychometric evaluation: Justification and planning for the sample size included in the study design discussions and documented
Sample Size: Reality

| For most clinical studies, the PRO sample size is determined by the analytic demands for the primary endpoint | For psychometric evaluations of PRO measures, the sample size is often a compromise due to timeline, resources, and cost restrictions |

No matter the circumstances, the size of the sample used in the post hoc PRO analyses should be considered when reporting results.

Note: Sample size is the number of patients completing the PRO measure.
Recommendation: For “Just Right” Sample Sizes

- Example: Group mean differences
 - If the test for the group means is statistically significant, further support the PRO score differences by reporting the proportion of responders by group (if available)
 - Use a distribution-based estimate if not available
Recommendations: If Sample Size Is Too Large

- Conduct the test on the full sample
- Provide information on the proportion of responders by group (if available or use distribution-based threshold)
- Conduct the test on multiple smaller subsamples (randomly select multiple subsamples using the clinical study stratum to sample and conduct the test)
- Provide confidence bands or effect size estimates
Example:
Clinical Trial Post Hoc PRO Analysis

$\sigma^{2}(Z_{\beta} + Z_{\alpha/2})^{2}$

$n = \frac{2 \sigma^{2} (Z_{\beta} + Z_{\alpha/2})^{2}}{\text{difference}^{2}}$

$n = \frac{2 (100)(0.84+1.96)^{2}}{5^{2}} = 63$

- Sample size needed for 80% power and 0.05 level of significance is approximately 63 per arm
- Sample size of the clinical trial is 250 per arm, and resulting power is ~100% to detect 5 points difference in means!

Furthermore, group mean tests ignore other aspects related to PRO scores:
- Score ranges
- Skewness
Example From Lyrica

Postherpetic Neuralgia (n=368)

- Treatment with LYRICA 100 mg and 200 mg three times a day statistically significantly improved the endpoint mean pain score and increased the proportion of patients with at least a 50% reduction in pain score from baseline.

- Evaluated proposed cut scores of 30% and 50% improvement on an 11-point numerical pain rating scale to determine if three treatment groups differ from placebo.

![Graph showing pain improvement over time for different treatment groups compared to placebo.](Lyrica, 2006)
Note: Positive change indicates improvement
Recommendations: If Sample Size is Too Small

- Report descriptive information on the PRO (including effect size)
- Pool across studies (if same design, especially for cases with small populations such as orphan disease)
- Provide support for results based on published information from similar studies (e.g., compare effect sizes or clinically meaningful differences)
- Provide information on the proportion of responders by group (if available or use distribution-based threshold)
Psychometric Evaluations: Recommendations for Sample Size

- A priori state the key property for the psychometric evaluation
- Based on the key property, justify the sample size
- Incorporate confidence intervals for results for the secondary properties evaluated

Sample Size Demands

- Initial item performance evaluations using classical test theory
- Construct validity: correlation analyses
- Known groups analyses
- Rasch
- IRT factor analysis
- Multidimensional IRT model with 4-5 dimensions
Psychometric Evaluation:
Sample Size Should Be Based on Key Property

-Additional Development post-ISPOR is underway for this content. Please contact lmcleod@rti.org for the current status.
“Real Life” Example

<table>
<thead>
<tr>
<th>Property</th>
<th>n = 30</th>
<th>n = 50</th>
<th>n = 100</th>
<th>n = 150+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cronbach’s alpha</td>
<td>0.88</td>
<td>0.89</td>
<td>0.87</td>
<td>0.87</td>
</tr>
<tr>
<td>Construct validity correlation</td>
<td>-0.42</td>
<td>-0.21</td>
<td>-0.35</td>
<td>-0.35</td>
</tr>
<tr>
<td>Known groups effect size</td>
<td>Not computed</td>
<td>Apprx. 0</td>
<td>0.47</td>
<td>0.37</td>
</tr>
</tbody>
</table>
Summary and Fine Print

- Consider sample size when evaluating PRO measures or evaluating treatments using PRO measures
- One size does not fit all
 - We have provided recommendations/rules of thumb
 - Justify the sample size after considering the complexity of the PRO measure, its intended use, the purpose of the evaluation, etc.
Quantitative Challenges Facing Patient-Centered Outcomes

Missing Data

Lauren Nelson
lnelson@rti.org

Presented to: ISPOR 2014

June 4, 2014
Is Missing PRO Data Inevitable?

- Missing (incomplete) data commonly occurs in longitudinal studies despite well-planned and carefully executed studies
 - Declaration of Helsinki

- Magnitude of missingness varies
 - Trial length
 - Disease
 - Treatment

- Types of missing
 - Scale nonresponse
 - Item nonresponse
How Much Data Can Be Missing: “Rules of Thumb”

- **Scale nonresponse**
 - < 5% ignorable
 - 5%-20% may or may not impact conclusions
 - 30%-50% restrict conclusions

- **Item nonresponse**
 - < 5% ignorable
 - > 10% concern

- Seriousness of missing depends on the reasons or missing, study objective, and intended use

- Data should always be inspected for missing patterns

- Rules of thumb vary across the literature and types of missing data mechanisms
 - Missing Not at Random (MNAR)
 - Missing at random (MAR)
 - Missing Completely at Random (MCAR)

Fairclough (2010), Capparelli (2013)
Review: Missing Data Mechanisms

- **MNAR**
 - P(R|Yo,Ym)
 - Can be dependent on missing PRO
 - Must estimate parameters of joint PRO distribution

- **MAR**
 - P(R|Yo,Ym) = P(R|Yo)
 - Can be dependent on observed covariates and PRO
 - Independent of missing PRO

- **MCAR**
 - P(R|Yo,Ym) = P(R)
 - Can be dependent on observed covariates
 - Independent of observed and missing PRO

R = distribution of missingness (0 = not missing, 1 = missing); Yo = observed PRO; Ym = missing PRO
Review: Impact of Missing Data Mechanisms

- Important: Reduces power
 - A concern for rare conditions (orphan diseases) but not for overpowered, large-scale trials

- Most important: Can produce biased estimates and erroneous conclusions
 - Irrespective of sample size
 - Impacts variance estimates
 - Impacts random assignment (selection bias: subjects self-select), hence estimate
Prevention and Treatment of Missing Data in Clinical Trials

- First line of defense: Prevention
 - PRO scale data is precious!
 - Train sites and staff extensively on data collection
 - Consider patient burden
 - Complete evaluation of enrolled patients, irrespective of their adherence to study therapy or protocol
 - Collect auxiliary information on reasons for missing/dropout

- Last line of defense: Statistical

National Research Council (2010)
NRC Guidelines: Identify Patterns of Scale Nonresponse

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Baseline</th>
<th>Week 4</th>
<th>Week 8</th>
<th>Week 12</th>
<th>Week 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
NRC Guidelines: Statistical Approaches

- Scale nonresponse
 - Primary analysis: Select an analysis method with assumptions that are appropriate for MAR
 - Maximum likelihood estimation techniques
 - Bayesian multiple imputation
 - Secondary analysis: Select an alternative method (assuming MNAR) and conduct a sensitivity analysis
 - Pattern mixture models
 - Semi-parametric selection models
 - Use of auxiliary information may help MNAR approximate MAR
 - Compare results and conclusions
 - Currently no consensus on how to optimally synthesize results from the primary and secondary analyses

National Research Council (2010)
Guidelines for Item Nonresponse in Clinical Trials

Use the Developers’ Algorithm

FDA (2009), Fairclough (2010), Capparelli, 2013
Developers’ Algorithms

- Objective: Preserve reliability (classical test theory concept)
- Common approach: Single imputation
- “Half-rule” (person mean) single imputation
 - Subjects must respond to at least half of the items (otherwise missing)
 - Imputed response: Mean of nonmissing (within subject)
 - Score = sum of nonmissing items and imputed responses
- ‘Maximum response possible’ single imputation
 - Imputed response: Rescale the “worst” response option; multiply it by the ratio of the sum of nonmissing items to the possible total scale score
 - Score = sum of nonmissing responses and imputed responses

Fairclough (2010), Capparelli, 2013
Recommendations

-Additional Development post-ISPOR is underway for this content. Please contact inelson@rti.org for the current status.
PRO Missing Data Frontier

- No data/information left behind (include missing data)
- Unified modern (i.e., model-based and computer intensive) scale and item nonresponse methods for clinical trial research
 - Measurement precision of the outcome measure will automatically be included. Trial models continue to treat an individual’s score as if it was perfectly measured
 - Potentially will reduce bias and erroneous conclusions for “Treatment/No Treatment” high-stakes decisions
- Together, statisticians and psychometricians have the computing and brain power to accomplish this
Quantitative Challenges Facing Patient-Centered Outcomes Research

Maximizing Response Rates by Minimizing Burden

Maria Orlando Edelen

RAND Corporation

June 4, 2014, Montreal, Canada.
Overview

• The problem

• Leveraging modern resources to alleviate the problem

• The role of ‘modern’ measurement theory
 – IRT-based assessment
 • (short forms and computer adaptive tests)

• The role of technology and computer-based data collection
Low response rates are a threat to patient-centered outcomes research

- Low response rates are typically non-random
 - Respondent fatigue or burnout
 - Irrelevant questions
 - Inconvenience
 - Lag time between recruitment and survey completion
Most approaches to handling missing data require assumption of MCAR or MAR

- MCAR = Missing Completely at Random
- MAR = Missing at Random

- Non-random missing data is
 - Difficult to manage analytically
 - A threat to generalizability of results

- Missing data is best avoided if at all possible!
Modern resources can help to maximize response rate and minimize burden

• Use of ‘modern’ measurement tools based on item response theory (IRT) can facilitate brief yet reliable assessment
 – short forms (SFs) and computer adaptive tests (CATs)

• Use of novel computer-based assessment platforms can increase convenience, reduce lag time, sustain attention
 – hand held devices, notepads, smart phones
IRT has several features that facilitate creation of short precise instruments

- Items and scores are placed on the same continuum.
- The reliability of a score is a function of its location on the underlying measurement continuum.
- Score reliability can be calculated based on responses to any given item or set of items.
IRT-based SFs and CATs leverage these features

- SFs are typically constructed to maximize precision
 - At a given point on the measurement continuum (e.g., cut-score for diagnosis)
 - Across the entire continuum

- Depending on measurement goals, different items will be selected for SF

- CAT takes this one step further by tailoring the item administration to the individual in real time
CAT DEMO

Using the PROMIS Smoking Assessment Toolkit

Nicotine Dependence item bank
First item: Score = 58.9, SE = 5.8, rel=.66

I frequently crave cigarettes: Quite a bit
Second item: score = 63.6, SE = 4.5, rel=.80

When I haven’t been able to smoke for a few hours the craving gets intolerable: Often
Third item: score = 65.0, SE = 3.6, rel=.87

I smoke even when I am so ill that I spend most of the day in bed: Sometimes
Fourth item: Score = 65.0, SE = 3.2, rel=.90

I find myself reaching for cigarettes without thinking about it: Often
CAT administration produced highly reliable score estimate with just four items

<table>
<thead>
<tr>
<th>Item</th>
<th>Response</th>
<th>Score</th>
<th>Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>I frequently crave cigarettes.</td>
<td>Quite a bit</td>
<td>58.9</td>
<td>0.66</td>
</tr>
<tr>
<td>When I haven’t been able to smoke for a few hours, the craving gets intolerable.</td>
<td>Often</td>
<td>63.6</td>
<td>0.80</td>
</tr>
<tr>
<td>I smoke even when I am so ill that I spend most of the day in bed.</td>
<td>Sometimes</td>
<td>65.0</td>
<td>0.87</td>
</tr>
<tr>
<td>I find myself reaching for cigarettes without thinking about it.</td>
<td>Often</td>
<td>65.0</td>
<td>0.90</td>
</tr>
</tbody>
</table>
Use of computer-based assessment opens up a wide variety of assessment platforms

- Laptop “kiosk” for screening or survey completion in waiting room area
- Ipad or tablet that respondent can carry throughout visit
 - Scheduled prompts with links to survey
- Smartphone that respondent can take home
 - Email reminders with links to survey
- Social media (e.g., Facebook and Twitter) for reminders, links and study updates to keep respondents involved
The platform can be chosen to maximize response rates and improve data quality

- Make it easy and convenient for participants to get screened or respond to survey items
- Can incorporate voice support to ensure comprehension
- Can also collect additional useful data
 - Time to complete
 - GPS data
Thank you

QUESTIONS?