- Intracerebral hemorrhage (ICH) is the deadliest form of stroke¹ resulting in mortality and severe disability among survivors.
- ICH events impose a significant economic burden due to intense medical resource use during acute treatment as well as the cost of long-term management of survivors²⁻
- · Currently, no drug therapies have been proven effective for treatment of acute ICH.
- Recombinant activated factor VII (rFVIIa) is currently indicated for treatment of bleeding episodes and for the prevention of bleeding in surgical interventions/invasive procedures in hemophilia patients with factor VIII inhibitors and patients with congenital FVII deficiency.
- . A recent Phase IIb clinical trial showed that administration rFVIIa of within 4 hours of ICH onset reduced mortality and improved 90-day functional outcome compared to

Objective

 $\overset{-}{\text{To}}$ determine cost-effectiveness of rFVIIa compared to current standard of care in patients with acute ICH.

Methods

Patient Population

Patients enter the hospital emergency room presenting with acute ICH within 3 hours of symptom-onest. Specific patient characteristics include:

• Age distribution typical of published patient populations with ICH^{5,8}.

• Characteristics (ICH severity, disease history, time of arrival after onset of ICH event)

- similar to those observed in the clinical trial?.
- · Patient weight of 75 kilograms.

Study Design

- . A decision-analytic model was created to estimate the cost-effectiveness of rFVIIa for
- Model takes a Medicare perspective, since around two-thirds of acute ICH patients in the USA are Medicare beneficiaries⁹.
- Patients entering the model receive rFVIIa 40 $\mu g/kg,\,80\,\mu g/kg,\,or\,160\,\mu g/kg,\,o$ standard care within 4 hours of ICH onset (three dose arms in the Phase IIb trial).
- Drug costs are based on Medicare average sales prices (ASP)10. · Patients are followed for the first 90 days after ICH onset and annually thereafter for the remainder of lifetime.
- . Functional status, measured by modified Rankin Score (mRS), is estimated at 90 days after ICH onset based on clinical trial data (Table 1)7
- . Short-term cost calculations (90 days after ICH onset):
- -Short-term costs and outcomes are based on treatment-related clinical efficacy (Table 1) and length of stay in hospitals (Table 2) as obtained from clinical trial data and costs from an analysis of Medicare claims data (Table 3).
- -Costs include: drug cost, inpatient stay, skilled nursing facility costs, and any additional medical management costs.
- Long-term Annual Calculations:
- -Post-90 day costs and outcomes are estimated annually based on mRS score, using mRS-specific multipliers obtained from published literature (Table 4).
- · Utility weights specific to each mRS score are obtained from published literature (Table 4).
- Costs and outcomes are presented in 2005 US \$ and discounted at a rate of 3% per

Sensitivity Analysis

- One-way sensitivity analyses were performed on key input parameters.
 Parameters were varied by +/- 20%, or based on plausible range data provided in the
- literature11

Modified Rankin Score (mRS)

- mRS 0 = no disability

- mRS 1 = no significant disability
 mRS 2 = slight disability
 mRS 3 = moderate disability
 mRS 4 = moderate to severe disability
- mRS 5 = severe disability mRS 6 = death

Cost-Effectiveness of Recombinant Activated Factor VII in the Treatment of Intracerebral Hemorrhage

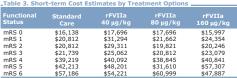
Stephanie R. Earnshaw, PhD1; Ashish V. Joshi, MS, PhD2; Michele R. Wilson, MSPH1; Jonathan Rosand, MD, MSc3

1RTI Health Solutions, Research Triangle Park, NC; 2Novo Nordisk Inc., Princeton, NJ; 2Vascular and Critical Care Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA

Figure 1. Model structure

The model assumes a permanent functional status after 90 days based on published literature.1

Long-term cost multipliers and death hazard ratios are based on ischemic stroke model.1 The model assumes that long-term costs and outcomes are based on functional status as defined by


Table 1. Distribution of Patients by Functional Status after 90 Days

	Patients in mRS State (%)*			
Functional Status	Standard Care	rFVIIa 40 μg/kg	rFVIIa 80 μg/kg	rFVIIa 160 µg/kg
mRS 0	2.1	0.0	9.8	7.8
mRS 1	6.3	16.7	10.9	16.5
mRS 2	9.4	13.9	14.1	9.7
mRS 3	13.5	14.8	15.2	11.7
mRS 4	24.0	22.2	23.9	24.3
mRS 5	15.6	14.8	6.5	10.7
mRS 6	29.2	17.6	18.5	19.4
#Printelleration of		was assistant on the	A Initial	TCU Distribution of

functional status was obtained from a phase IIb clinical trial

Table 2. Initial Hospital Length of Stay for Patients by Functional Status

	Initial Hospital LOS (days)				
Functional Status	Standard Care	rFVIIa 40 μg/kg	rFVIIa 80 μg/kg	rFVIIa 160 μg/kg	
mRS 0	11.0	12.1	12.1	10.9	
mRS 1	14.3	21.7	14.9	16.8	
mRS 2	14.3	20.3	13.6	13.9	
mRS 3	14.7	17.3	14.3	15.9	
mRS 4	18.8	19.5	18.5	20.1	
mRS 5	21.2	26.0	12.7	33.3	
mRS 6	13.5	12.8	14.4	11.3	

obtained from the Metlife market survey

Table 4 Long-term Costs and Outcomes

Functional Status	Long-term Annual Medical Costs	Long-term Cost Multipliers ¹¹	Long-term Mortality Hazard ¹¹	Utility Values ¹³
mRS 0	\$5,609	1.00	1.00	0.85
mRS 1	\$5,609	1.00	1.00	0.85
mRS 2	\$7,123	1.27	1.11	0.85
mRS 3	\$10,881	1.94	1.27	0.51
mRS 4	\$22,324	3.98	1.71	0.15
mRS 5	\$33,710	6.01	2.37	0.15
mRS 6	\$0	0.00	0.00	0.00

Long-term annual costs estimated from a Medicare claims data analysis*. Costs for patients with no or minimal disability (mRS 0-1) were estimated, and then cost multipliers* were applied to estimate the annual costs for patients in each mRS state. Note: these costs and outcomes are based on functional status (mRS core) after 90-days from ICH onset, and are thus irrespective of treatment arm.

Results

- Expected lifetime costs per ICH patient were calculated for each treatment arm (Figure 2). Treatment with 160 μg/kg rFVIIa resulted in the highest cost, while treatment with 80 μg/kg rFVIIa resulted in the lowest cost (Figure 2).
- Cost of rFVIIa is low relative to total expected medical costs (Figure 2).
- Expected lifetime outcomes were higher for all treatment groups compared to patients who did not receive rFVIIa (Figure 3).
- Results are robust to realistic parameter variation (Table 5).

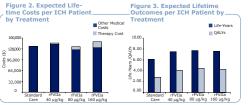


Table 5. One-way Sensitivity Analysis: Effect of Parameter Variation on

- the Incremental Cost per QALY for rFVIIa Compared to Standard Care —				
Model	rFVIIa	rFVIIa	rFVIIa	
Parameter	40 μg/kg vs	80 μg/kg vs	160 μg/kg vs	
	Standard Care	Standard Care	Standard Care	
Base-Case Analysis				
ICER (\$/QALY)	\$5,769	Dominant	\$8,780	
Sensitivity Analysis				
Cost Multiplier				
Lower Bound	\$7,038	\$2,579	\$13,148	
Baseline	\$5,769	Dominant	\$8,780	
Upper Bound	\$4,446	Dominant	\$4,528	
Death Hazard Ratio				
Lower Bound	\$4,752	Dominant	\$5,735	
Baseline	\$5,769	Dominant	\$8,780	
Upper Bound	\$6,359	\$381	\$11,350	
Clinical Efficacy 40 µg/kg				
Lower Bound	\$17,585			
Baseline	\$5,769			
Upper Bound	Dominant			
Clinical Efficacy 80 µg/kg				
Lower Bound		\$3,094		
Baseline		Dominant		
Upper Bound		Dominant		
Clinical Efficacy 160 µg/k				
Lower Bound	y 		\$20,748	
Baseline			\$8,780	
Upper Bound			\$2,022	
The table illustrates the effect of	on the incremental cost	-effectiveness ratio (ICEE		

Conclusions

- Treatment with rFVIIa 40 $\mu g/kg$ and 160 $\mu g/kg$ are cost-effective compared to standard care at the generally acceptable cost-effectiveness threshold of \$50,000/
- Treatment with rFVIIa 80 μg/kg is not only cost-effective but is cost-saving compared to the current standard of care.

References