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Aims Electrocardiogram (ECG) interpretation is an essential skill across multiple medical disciplines; yet, studies have consistently 
identified deficiencies in the interpretive performance of healthcare professionals linked to a variety of educational and 
technological factors. Despite the established correlation between noise interference and erroneous diagnoses, research 
evaluating the impacts of digital denoising software on clinical ECG interpretation proficiency is lacking.

Methods 
and results

Forty-eight participants from a variety of medical professions and experience levels were prospectively recruited for this 
study. Participants’ capabilities in classifying common cardiac rhythms were evaluated using a sequential blinded and 
semi-blinded interpretation protocol on a challenging set of single-lead ECG signals (42 × 10 s) pre- and post-denoising 
with robust, cloud-based ECG processing software. Participants’ ECG rhythm interpretation performance was greatest 
when raw and denoised signals were viewed in a combined format that enabled comparative evaluation. The combined 
view resulted in a 4.9% increase in mean rhythm classification accuracy (raw: 75.7% ± 14.5% vs. combined: 80.6% ±  
12.5%, P = 0.0087), a 6.2% improvement in mean five-point graded confidence score (raw: 4.05 ± 0.58 vs. combined: 
4.30 ± 0.48, P < 0.001), and 9.7% reduction in the mean proportion of undiagnosable data (raw: 14.2% ± 8.2% vs. combined: 
4.5% ± 2.4%, P < 0.001), relative to raw signals alone. Participants also had a predominantly positive perception of denoising 
as it related to revealing previously unseen pathologies, improving ECG readability, and reducing time to diagnosis.

Conclusion Our findings have demonstrated that digital denoising software improves the efficacy of rhythm interpretation on single-lead 
ECGs, particularly when raw and denoised signals are provided in a combined viewing format, warranting further investiga
tion into the impact of such technology on clinical decision-making and patient outcomes.
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Introduction
Electrocardiogram (ECG) interpretation is a vital investigative skill that en
ables the effective triage, diagnosis, and management of numerous medical 
conditions. Adept interpreters rely on a combination of pattern recogni
tion capabilities and advanced cognitive functions to discern pathological 
deviations in the ECG, contingent upon the clear identification of diagnostic 
features.1,2 However, this intricate process is challenged by the presence of 
noise and artefacts originating from non-cardiac sources during signal ac
quisition. Artefacts that mimic the morphology of pathological features 
can simulate non-existent arrhythmias and cardiac abnormalities, including 
atrial fibrillation, ventricular tachycardia, and myocardial ischemia, resulting 
in erroneous diagnoses and potentially inappropriate interventions.3–6

Furthermore, excessive noise interference can distort or obscure the 
underlying signal, rendering significant portions of recordings clinically un
actionable. This can potentially result in missed or delayed diagnoses, a 
problem that is exacerbated in the ambulatory setting.7,8 Implementing ef
fective ECG denoising strategies within clinical workflow is crucial to re
duce diagnostic error and mitigate the need for repeat investigation.

In accordance with established consensus standards, medical ECG de
vices utilise bandpass filters with adjustable frequency cutoffs in conjunc
tion with pre-configured notch filters implemented through analogue 
components or integrated digital algorithms.9–12 Although effective against 
persistent contaminants of predictable frequency, conventional noise- 
reduction approaches have shown limited efficacy against dynamic inter
ference sources, such as electromyographic noise and motion-derived 
artefacts, which vary considerably in frequency and morphology.13

Additionally, standard filtering methods have themselves been identified 
as significant sources of error during ECG interpretation, particularly 
when improper bandwidth settings are used.14,15 Notably, low-pass filter
ing can reduce the amplitude of Q, R, and S waves, which are essential for 
diagnosing left ventricular hypertrophy, while high-pass filters can induce 
shifts in the ST segment that simulate or remove evidence of transient is
chaemia.16–19

Recent advancements in digital ECG filtering techniques hold promise 
for overcoming the limitations of conventional filtering approaches.20,21

However, there is a notable absence of literature evaluating their impact 
on the interpretive abilities of healthcare professionals, making it difficult 
to justify their integration within clinical workflow. While many studies 
have assessed filtering efficacy using mathematical measures of signal dis
tortion on synthetically noisy signals22,23 or by assessing the accuracy of 
automated feature detection algorithms,24 these provide limited insight 
into their real-world clinical implications. Others have employed small 
groups of expert cardiologists to evaluate signal interpretability before 
and after denoising.25,26 Nevertheless, these findings lack generalizability 
across the broad range of ECG-related healthcare professions and ex
perience levels encountered in practice. Additionally, these studies over
look the crucial aspect of assessing ECG interpreters’ perceptions 
towards the technology, which is essential for its adoption in routine 
clinical practice to be successful.27

The primary aim of this study was to assess the impact of digital de
noising on the clinical interpretation of single-lead ECGs and, secondly, 
to gauge healthcare professionals’ perception towards the technology. 
Single-lead ECGs prevalent in portable and consumer ECG devices are 

602                                                                                                                                                                                         S. McKenna et al.



used in tracking dynamic track heart rate metrics and diagnosing rhythm 
disturbances, such as atrial fibrillation, particularly in ambulatory 
settings. However, their clinical utility is often compromised by noise- 
related issues that hinder interpretation, making effective denoising cru
cial to maximize the value of single-lead ECG data. By systematically 
evaluating the impacts of denoising on clinical interpretation, we aim 
to highlight the critical role it plays in improving the reliability and diag
nostic value of single-lead ECGs, ultimately benefitting the healthcare 
experts who rely on these devices for cardiac assessment.

Methods
ECG signals and processing software
A set of 42 ECG signals was retrospectively selected from proprietary ECG 
databases recorded by Jersey General Hospital and B-Secur Ltd on two dif
ferent devices: (i) Bittium® Faros (Oulu, Finland) ambulatory ECG monitors 
in lead I/II configuration; and (ii) a proprietary single-lead handheld ECG de
vice (Figure 1A). To ensure adequate representation of clinical scenarios 
relevant to single-lead ECG device application, signals were chosen to en
compass a range of ECG waveform characteristics, variable sources and in
tensities of real noise, and a variety of rhythm abnormalities, including atrial 
fibrillation, atrial flutter, ectopic beats and rhythms, and conduction disor
ders (Table 1).

The 42 raw signals were extracted and processed using HeartKey® 
(Belfast, UK) software,28,29 generating 42 corresponding denoised ECG sig
nals (84 signals in total). HeartKey is a cloud-based ECG processing platform 
that employs a series of iterative, logic-based digital filters for denoising, in
cluding a mains subtraction filter with adaptive harmonic estimation to can
cel interference at 50/60 Hz, a low-pass filter to remove noise above the 
standard 40 Hz ambulatory cut-off, and a baseline and smoothing filter fea
turing dynamic components to address non-stationary noise interference. 
Challenging 10-s segments from each of the corresponding signals were 
manually selected for the ECG interpretation protocol.

Baseline survey
A clinical work assessment survey was conducted to investigate the charac
teristics of recruited participants encompassing factors, such as gender, 
medical profession, experience and training in ECG interpretation, fre
quency of ECG interpretation, roles and responsibilities within the ECG 
workflow, and perceived challenges related to noise in clinical settings.

ECG interpretation protocol
A two-part interpretation protocol consisting of sequential blinded and semi- 
blinded components was devised to assess the impact of signal denoising on 
clinical ECG rhythm interpretation capability (Figure 1B). In part one, each of 
the 84 signals (42 raw, 42 denoised) were independently assessed in a blinded 
and randomised order, ensuring participants were unaware of whether the 
signal being assessed was raw or denoised. The rhythm classification categor
ies reflect the primary classes of arrhythmia that can be diagnosed using 
single-lead ECG and are similar to those used in the PhysioNet Computing 
in Cardiology 2017 Challenge.30 Participants were asked to classify each 
10-s ECG strip as one of the following: (i) N: normal or normal with 
≤2 PVCs; (ii) A: atrial fibrillation or atrial flutter; (iii) O: other potential cardiac 
conditions, such as sinus tachycardia or >2 PVCs; or (iv) U: undiagnosable or 
insufficient data to be confident of the diagnosis. Following this diagnosis, par
ticipants assigned confidence scores for the rhythm diagnosis on a five-point 
graded scale, ranging from 1 (‘not at all confident’) to 5 (‘confident’).

In the second part, the 48 corresponding raw and denoised ECGs were 
presented in a combined viewing format to enable comparative signal as
sessment. Participants were instructed to provide rhythm classifications 
and confidence scores, as described previously. Additionally, participants 
were asked to provide a subjective rating on a scale of 1 (‘very negative im
pact’) to 5 (‘very positive impact’) for three statements assessing the per
ceived impact of signal denoising on clinical ECG workflow for each of 
the 42 combined ECG strips. Participants completed the assessment using 
an online Google Form, requiring an estimated 3 h to finish. An example of 

the interpretation tasks can be found in the supplementary document (see 
Supplementary material online, Figures S1 and S2).

Participant recruitment
The study included healthcare professionals aged over 18 who were either 
undergoing or had completed their medical training. Only those who routine
ly interpret ECGs as part of their clinical duties were considered eligible for 
participation. Details of the study were advertised on social media between 
August and November 2022. Interested healthcare professionals were in
structed to submit their CVs for initial eligibility screening. In some instances, 
cover letters were also requested to provide additional context on the 
applicants’ experience with ECG. Recruited participants provided informed 
consent and received financial remuneration upon completion of the inter
pretation tasks. The remuneration amount for each participant was deter
mined on a sliding scale considering their expertise and experience levels.

Reference ECG interpretations
The reference diagnosis for each of the 48 signals was determined through 
consensus agreement using the test annotations provided by the three 
most experienced consultant cardiologists. In cases where discrepancies ar
ose, a fourth independent cardiologist possessing over 30 years of expertise 
in ECG interpretation intervened to provide the definitive diagnosis. The 
fourth cardiologist had access to both the raw and denoised ECG signals, as 
well as the annotations provided by the other cardiologists.

Statistical analyses
Data analysis and visualisation were performed using the Scipy, Numpy, and 
Pandas packages in Python version 3.11.31–33 Participant characteristics were 
summarized using descriptive statistics, with nominal variables presented as 
counts and means with standard deviations. Accuracy was calculated as the 
percentage of test annotations that matched the rhythm classification of the 
reference ECG. Mean values for rhythm classification accuracy, interpret
ation confidence, and proportion of undiagnosable (‘U’) annotations were 
calculated for each participant, stratified by categorical variables (interpret
ation format, experience cohort), and presented alongside the correspond
ing confidence interval (CI). Shapiro–Wilks tests were performed to 
examine the normality of the data distribution, followed by a paired sample 
Wilcoxon signed rank test for group comparisons. The Spearman correl
ation coefficient was used to examine the correlation between rhythm clas
sification accuracy and confidence scores. All P-values were adjusted for 
multiple comparisons using a post-hoc Bonferroni correction and were con
sidered statistically significant at P < 0.05. Descriptive statistics and testing re
sults are provided in the supplementary document (see Supplementary 
material online, Tables S1–S6).

Results
Participant characteristics
We recruited 48 healthcare professionals equally distributed across 
three experience cohorts based on the total number of years spent in 
an ECG-related role: junior (<5 years), experienced (5–10 years), and 
senior (>10 years). Table 2 summarises the characteristics of the partici
pants and their responses to the clinical work assessment survey. The 
mean number of years spent in an ECG-related role for those in the jun
ior, experienced, and senior experience cohorts was 1.6 (±1.2) years, 6.8 
(±2.0) years, and 19.1 (±8.3) years, respectively. Of the total cohort, 19 
(40%) were male, and most were located in the UK (65%) and Jersey 
(27%). Cardiac physiologists (56%) constituted the largest professional 
group, alongside various other professional cohorts, ranging from junior 
doctors (17%) to consultant cardiologists (8%).

The majority of participants (81%) routinely interpreted ECGs on a 
daily basis as part of their clinical responsibilities, with the primary tasks 
being to provide an initial diagnosis (60%) or confirm an existing one 
(46%). Familiarity with different ECG device types varied across the co
hort: 81% had experience with 12-lead ECGs, 40% with ambulatory 
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Figure 1 Overview of (A) the ECG devices, noise types, and cardiac rhythms included within the single-lead ECG interpretation test set and (B) the 
two-part ECG interpretation protocol. PVC, premature ventricular contraction.
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ECG devices, and 21% with both. The majority of participants (92%) re
ported encountering substantial noise contamination requiring a repeat 
investigation in ≥10% of ECGs acquired during clinical practice, with 
muscle noise and motion-induced artefacts being the most frequently 
observed sources of interference.

ECG rhythm classification accuracy
The combined viewing format yielded the highest mean rhythm classifica
tion accuracy of 80.6% (95% CI 77.0–84.2) across all experience cohorts, 
marking a modest, but statistically significant, mean improvement of 4.9% 
and 3.1% over the individual raw (75.7% (95% CI 71.5–79.9), P = 0.0087) 
and denoised (77.5% (95% CI 73.9–81.0), P = 0.047) signal interpretation 
formats (Figure 2A). These improvements were relatively consistent 
across experience cohorts, with junior, experienced, and senior groups 
demonstrating mean interpretation accuracy increases of 5.2%, 4.6%, 
and 4.8%, respectively, compared to the raw interpretation format. 
Although the denoised format exhibited a slight mean accuracy increase 
of 1.8% over the raw format, this was not statistically significant 
(P = 0.574). Additionally, rhythm classification accuracy was positively 
correlated with ECG experience level, with the mean participant accuracy 
for the senior cohort [86.6% (95% CI 84.0–89.1)] being significantly great
er than that of the experienced [79.3% (95% CI 76.6–82.0), P < 0.001], 
and junior [68.0% (95% CI 64.0–71.9), P < 0.001] cohorts.

ECG interpretation confidence
Participants were generally confident in their interpretations, with the ma
jority of scores falling within the higher confidence categories: 2477 
(44.5%) were rated as 5, 1805 (32.8%) as 4, 975 (17.7%) as 3, 244 
(4.4%) as 2, and 28 (0.51%) as 1. Lower confidence scores (1 or 2) 
were infrequent, potentially indicating that interpretations of low diagnos
tic confidence were assigned as ‘U’ (549, 9.1% of all annotations).

Inter-group confidence trends were comparable to those observed for 
rhythm classification accuracy. When considering all experience cohorts, 
the combined signal interpretation format produced a mean confidence 
score of 4.30 (95% CI 4.16–4.43), representing a percentage increase of 
6.2% and 5.4% over the individual raw (4.05 (95% CI 3.88–4.22), 
P < 0.001) and denoised (4.08 (95% CI 3.91–4.24), P < 0.001) formats, 
respectively (Figure 2B). Across all signals, the senior cohort demonstrated 
the highest confidence in their diagnoses, with a mean participant confi
dence score of 4.38 (95% CI 4.27–4.49), while the junior cohort exhibited 
the least [3.89 (95% CI 3.71–4.08), P < 0.001]. Mean confidence score 

improvements were similar across cohorts, with mean increases of 
+6.8% for juniors, +5.6% for experienced participants, and +6.3% for se
niors in the combined viewing format compared to raw. The Spearman 
correlation coefficient of 0.50 (P < 0.001) indicated a moderate and stat
istically significant positive correlation between mean rhythm classification 
accuracy and mean confidence score (Figure 2C).

Proportion of undiagnosable ECG data
Signal denoising had a profound impact on reducing the number of undiag
nosable (‘U’) annotations (Figure 3A and B). Over the three experience co
horts, the mean proportion of ‘U’ annotations per participant for signals in 
the raw format [14.2% (95% CI 10.5–17.9)] was significantly higher com
pared to the denoised [8.5% (95% CI 6.0–11.0), P < 0.001] and combined 
[4.5% (95% CI 2.8–6.2), P < 0.001] interpretation formats, corresponding 
to a relative ‘U’ annotation proportion decrease of 47.1% and 68.3%, 
respectively. The mean proportion of undiagnosable ECG data decreased 
with interpreter experience, with the junior cohort [12.7% (95% CI 9.27– 
16.2)] exhibiting a higher mean proportion of ‘U’ annotations compared 
to the experienced [9.0% (95% CI 6.0–12.0), P = 0.29) and senior cohorts 
(5.5% (95% CI 3.6–7.5), P = 0.002). Reductions in the mean proportion of 
undiagnosable data were also comparable across cohorts, with mean per
centage decreases of 66.7% for juniors, 72.2% for experienced partici
pants, and 65.8% for seniors in the combined viewing format compared 
to raw.

Out of the 287 signals annotated as ‘U’ in the raw interpretation for
mat, 203 (36.3%) received diagnoses of ‘N’, ‘A’, or ‘O’ in the denoised 
format and 231 (41.0%) in the combined format (Table 3). The rhythm 
classification accuracy of annotations changing from ‘U’ when viewed 
raw to a diagnosis of ‘N’, ‘A’, or ‘O’ once viewed in the denoised 
(77.0% (changed) vs. 77.5% (total)) or combined (72.0% (changed) vs. 
80.6% (total)) viewing formats was lower, but comparable to that of 
the entire annotation test set. Conversely, of the 5499 annotations 
of ‘N’, ‘A’, and ‘O’ when viewed in the raw format, 87 (1.6%) of the cor
responding signals were annotated as ‘U’ when viewed in the denoised 
format and 35 (0.6%) when in the combined format.

Clinical perception of digital ECG denoising
Participants had a predominantly positive perception of digital denoising as 
it relates to the three aspects of clinical ECG workflow that were assessed 
(Figure 4). When comparatively evaluating the raw and denoised signals to
gether in the combined interpretation format, participants stated that the 
denoised signal had a ‘positive (4)’ or ‘very positive (5)’ impact in 51% of 
responses to statement 1 (revealing unseen pathology), 65% of responses 
to statement 2 (speeding up ECG diagnosis), and 74% of responses to 
statement 3 (improving ease of ECG readability). Importantly, signal de
noising was perceived as ‘negative (2)’ in less than 3.7% of responses to 
each statement, with instances of a ‘very negative (1)’ occurring in less 
than 0.5% of responses.

Discussion
Deficiencies in the ECG interpretation abilities of healthcare profes
sionals are a longstanding concern within the medical community. 
Major errors have been reported in up to 33% of ECG interpretations, 
and as many as 11% of these errors lead to inappropriate patient man
agement.34,35 Even among cardiologists, who are widely regarded as the 
reference standard for definitive ECG diagnoses, interpretation accur
acy can vary considerably, ranging from 49% to 92%.36 A recent survey 
has also highlighted low levels of diagnostic confidence in a diverse co
hort of medical professionals, with only 12% feeling comfortable when 
performing independent ECG interpretation.37 Consequently, numer
ous studies have been conducted to investigate the sources of 
interpretive error across different medical professions and clinical 

Table 1 Sources and characteristics of the ECG test set 
signals (n = 42)

ECG device
Holter monitor (lead I/II) 36 (86%)

Handheld device 6 (14%)
Cardiac rhythm
Normal sinus rhythm 9 (21%)

Atrial fibrillation or atrial flutter 12 (29%)
Ectopic rhythms 18 (43%)

Heart block (1st, 2nd, or 3rd degree) 3 (7%)

Noise type
Baseline wander 12 (29%)

Powerline interference 9 (21%)

Motion artefacts 8 (19%)
Muscle noise 34 (81%)
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settings38,39 in addition to assessing the efficacy of interventive mea
sures, including educational initiatives,40 training tools,41 and the use 
of automated interpretation software,42 aimed at addressing these is
sues. However, despite the established association between noise 
and diagnostic errors in the ECG, our study is the first to directly evalu
ate the impact of digital denoising software on the interpretive capabil
ity of a diverse cohort of healthcare professionals.

Our results show that the denoising of single-lead ECG signals with 
an advanced, cloud-based platform afforded participants modest 

improvements in rhythm classification accuracy and diagnostic confidence 
while significantly reducing the proportion of undiagnosable data. 
Consistent with previous research, the participants with greater experi
ence demonstrated higher accuracy and confidence in ECG interpret
ation.43 The positive correlation observed between interpretation 
accuracy and diagnostic confidence also aligns with prior research, suggest
ing that healthcare professionals who are more confident in their interpre
tations tend to achieve higher accuracy.39,44 These findings support the 
view that confidence reflects interpretive proficiency and suggest that 
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Table 2 Characteristics of study participants and responses to the baseline clinical work assessment survey

Total  
(n = 48)

Junior cohort 
(n = 16)

Experienced cohort 
(n = 16)

Senior 
cohort  
(n = 16)

Years of ECG experience
Mean (SD) 9.2 (±8.9) 1.6 (±1.2) 8.1 (±5.5) 17.8 (±8.6)

Gender
Male 19 5 7 7

Female 29 11 9 9

Location
UK 31 8 13 10

Jersey 13 8 1 4

Ireland 2 — 1 1
Other 2 — 1 1

Medical profession
Consultant cardiologist 4 — 1 3

Trainee cardiologist 3 — 2 1

Cardiac physiologist 27 7 10 10
Cardiac nurse 3 1 — 2

GP 3 — 3 —

Junior doctor 8 8 — —
ECG device experience

12-lead ECG 29 10 9 10

Ambulatory ECG 9 3 3 3
Both 10 3 4 3

Frequency of ECG interpretation
Daily 39 12 12 15
Weekly 8 4 3 1

Monthly 1 — 1 —

ECG interpretation responsibility
Filtering/prioritizing 3 — 1 2

Initial diagnosis 23 11 7 5

Confirming diagnosis 16 4 5 7
All 6 1 3 2

Estimated % of ECGs in medical practice that contain 
substantial noise and must be repeated
<10% 4 — 2 2

10% 28 8 7 13

25% 13 6 6 1
50% 3 2 1 —

Typical noise observed during ECG recording
Motion artefacts 20 5 9 6
Muscle artefacts 18 7 4 7

Mains interference 5 3 1 1

All 5 1 2 2
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denoising may have a synergistic effect, where enhanced signal clarity con
tributes to both improved interpretive accuracy and increased confidence.

Importantly, as the scale of improvements in rhythm classification ac
curacy, confidence score, and proportion of undiagnosable annotations 
was largely consistent across the different experience cohorts, this 
would suggest that healthcare professionals of all training levels could 
potentially benefit from using digital denoising platforms to aid the in
terpretive process. In practical terms, our findings indicate that the im
plementation of such technology within clinical workflow could 
potentially reduce the need for repeat investigations by maximising 

the proportion of actionable ECG data while simultaneously reducing 
the likelihood of patient mismanagement through erroneous diagnoses, 
ultimately leading to improved patient outcomes.

A key finding of this study is the importance of presenting raw and 
denoised ECGs together in a combined viewing format to maximise 
the benefits of signal denoising. Existing practice guidelines emphasize 
the need for transparent disclosure of filtering parameters and caution 
against inappropriate filter use to preserve waveform fidelity.10,45–48

However, they do not address the potential impacts of comparative sig
nal evaluation pre- and post-denoising, suggesting that its significance 

Figure 2 Box-plot showing the distribution of mean rhythm classification accuracies (A) and mean confidence scores (B) for participants across ex
perience cohorts and ECG interpretation formats. Paired sample Wilcoxon signed-rank test with Bonferroni correction used for multiple comparisons: 
P < 0.05 (*); P < 0.005 (**); P < 0.0005 (***). Box edges denote the upper and lower quartile boundaries, with whiskers extending to 1.5 times the 
interquartile range. The median is displayed as a horizontal bar, the mean as a diamond, and outlier values as individual points. Linear regression analysis 
with 95% confidence interval bands (C ) shows the relationship between mean confidence score and mean rhythm classification accuracy for each par
ticipant across all signals (Rs = Spearman correlation coefficient).

Figure 3 Box-plot showing the mean proportion of ‘U’ annotations for participants across ECG interpretation formats (A). Paired sample Wilcoxon 
signed-rank test with Bonferroni correction used for multiple comparisons: P < 0.05 (*); P < 0.005 (**); P < 0.0005 (***). Box edges denote the upper 
and lower quartile boundaries, with whiskers extending to 1.5 times the interquartile range. The median is displayed as a horizontal bar, the mean 
as a diamond, and outlier values as individual points. Histogram showing the relative change in ‘U’ annotations in denoised and combined viewing 
formats (D).
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has been overlooked. We postulate that the provision of the raw, un
filtered waveforms alongside denoised signals provides interpreters 
with additional contextual information to aid in the identification of 
noise and artefacts that may not be readily discernible in isolation. 
Furthermore, the comparative approach enables interpreters to effect
ively cross-validate ECG features, thereby identifying any potential loss 
or distortion of diagnostic information during denoising, ultimately con
tributing to improved accuracy and confidence in diagnosis.

For digital health technologies to be successfully integrated within 
clinical practice, it is essential to address the perceptions and concerns 
of the healthcare professionals that will utilize them.27 If a technology is 
seen to improve the efficiency of clinical workflows by streamlining 
diagnostic processes or reducing workload, it is more likely to be ac
cepted.49 Conversely, if the potential benefits are deemed insubstantial 
or significant barriers to use exist, such as extensive training require
ments or poor compatibility with existing systems, healthcare profes
sionals may be reluctant to change their practices. Based on the 
overwhelmingly positive perception of signal denoising observed in 
this study, coupled with the growing ease of software integration within 

digital health infrastructures via cloud-based approaches,50 we antici
pate that such advanced signal denoising platforms could be easily inte
grated within current clinical workflows and accepted by healthcare 
professionals with minimal resistance.

This study possesses several limitations. Firstly, despite efforts to en
sure representation of a variety of signals with diverse rhythms and 
noise burdens, logistical constraints restricted the inclusion to a small 
number of ECG signals in the test set, which is unlikely to reflect the 
diversity encountered in practice. Secondly, we must also acknowledge 
a selection bias towards signals with significant noise contamination to 
reflect the challenging ambulatory use conditions of single-lead ECG de
vices, resulting in poorer quality recordings compared to those seen in 
other clinical scenarios. Thirdly, the proprietary denoising platform was 
not compared with other established techniques for medical ECG fil
tering. As filter type and parameters impact the fidelity of the denoised 
signal, this may limit the generalizability of our findings. The relatively 
small number of recruited participants and heterogeneous representa
tion across different healthcare professions may also limit generalizabil
ity. Lastly, although participants perceived the impacts of signal 

Figure 4 Responses to subjective questions assessing perceived clinical impact of digital ECG denoising. Percentage of responses to each of the three 
questions in part two of the interpretation protocol. Responses of ‘no impact’ have been omitted for clarity.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3 Comparison of the changes in the proportion and accuracy of diagnosable annotations (‘N’, ‘A’, or ‘O’) between 
interpretation formats over the entire cohort

Raw diagnosis (n) Denoised or combined 
diagnosis

Change in ‘U’ 
annotations (n)

Relative change in 
diagnosable annotations (%)

Accuracy of changed 
annotations (%)

Undiagnosable: ‘U’ (287) Denoised diagnosable: ‘N’, ‘A’ or ‘O’ −203 37.3 77.0

Combined diagnosable: ‘N’, ‘A’ or ‘O’ −231 68.2 72.0

Diagnosable: ‘N’, ‘A’, or 
‘O’ (1729)

Denoised undiagnosable: ‘U’ 87 −6.9 —
Combined undiagnosable: ‘U’ 35 −11.6 —
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denoising as positive, the study did not generate quantitative data to 
substantiate these claims.

Conclusion
This study has demonstrated the efficacy of advanced signal denoising 
software in reducing the proportion of single-lead ECG data deemed un
diagnosable due to noise interference while simultaneously enhancing the 
interpretive rhythm classification accuracy and confidence of ECG-based 
healthcare professionals. Crucially, the benefits were markedly improved 
when both raw and denoised signals were displayed concurrently in a 
combined viewing format, thereby enabling a comparative feature evalu
ation, an observation we feel is not adequately reflected in contemporary 
literature or medical guidelines. Future studies involving larger profession
al cohorts and more diverse clinical ECG representation are warranted to 
further validate these findings and determine direct, measurable impacts 
on clinical decision-making and patient outcomes.
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