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ABSTRACT
Background: Regulators and oncology healthcare providers are increasingly interested in using observational studies of real-
world data (RWD) to complement clinical evidence from randomized controlled trials for informed decision-making. To generate 
valid evidence, RWD studies must be carefully designed to avoid systematic biases. The clone-censor-weight (CCW) method has 
been proposed to address immortal time and other time-related biases.
Methods: The objective of this manuscript is to de-mystify the CCW method for cancer researchers by describing and presenting 
its core components in an accessible and digestible format, using visualizations and examples from cancer-relevant studies. The 
CCW method has been applied in diverse settings, including investigations of the effects of surgery within a certain time after 
cancer diagnosis, the continuation of annual screening mammography, and chemotherapy duration on survival.
Results: The method handles complex data wherein the treatment group to which an individual belongs is unknown at the start 
of follow-up. The three steps of the CCW method involve cloning or duplicating the patient population and assigning one clone 
to each treatment strategy, artificially censoring the clones when their observed data are inconsistent with the assigned strategy 
and weighting the cloned and censored population to address selection bias created by the artificial censoring.
Conclusions: The CCW method is a powerful tool for designing RWD studies in cancer that are free from time-related biases 
and successfully, to the extent possible, emulate features of a randomized clinical trial.
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1   |   Introduction

Randomized controlled trials (RCTs) are the gold standard for es-
tablishing the efficacy of cancer therapeutics. However, it is not al-
ways feasible to implement an RCT due to ethical concerns, small 
eligible study populations, and high costs. Even when feasible, 
trial study populations often vary from real-world populations in 
characteristics that limit generalizability. In such cases, observa-
tional studies may be informative to a variety of decision-makers. 
In cancer research, healthcare providers rely on observational data 
to complement experimental evidence to make informed decisions 
[1]. Additionally, regulatory bodies (such as the US Food and Drug 
Administration and the European Medicines Agency) have re-
cently published guidance on the inclusion of real-world data in 
support of the assessment of medical products [2, 3].

The increased availability of large administrative and clinical 
databases, along with novel statistical methods, offers an oppor-
tunity to address gaps left by RCTs. However, to generate valid 
real-world evidence, these data sources need to be used in a 
principled way to avoid systematic biases. Previous studies have 
shown that well-designed observational studies can generate 
valid estimates of treatment effects similar to those of clinical 
trials [4, 5]. Specifically, target trial emulation [6] can be used to 
avoid some systematic biases by: (1) describing the components 
of a protocol for a hypothetical target trial and then (2) emulat-
ing each of these components using observational data.

The alignment of study eligibility, treatment assignment, and 
start of follow-up—often referred to as time zero—is crucial for 
target trial emulation and prevents immortal-time [7] (and other 
time-related) biases. However, it can be challenging in obser-
vational studies when interventions cannot be identified at the 
point of study eligibility, but rather are observed over time. This is 
commonplace in cancer comparative effectiveness studies where 
interventions may include gaps between decision-making and im-
plementation (e.g., undergo surgery within 6 months from cancer 
diagnosis) [8], static time-related strategies (e.g., continue annual 
mammography) [9], and dynamic treatment strategies (e.g., initi-
ate androgen deprivation therapy when prostate-specific antigen 
(PSA) test levels exceed a certain threshold) [10].

The clone-censor-weight (CCW) method has been proposed to ad-
dress time-related biases [11, 12]. Using this approach, researchers 
acknowledge that the treatment an individual will receive is un-
known at the start of study follow-up. To address this issue, the 
CCW method follows a three-step process: (1) clones of each indi-
vidual are created at the start of follow-up and are assigned to each 
of the treatment strategies of interest; (2) clones are followed over 
time and artificially censored when their observed data deviates 
from the assigned treatment strategy; and (3) the study population 
is reweighted to account for the potential selection bias induced by 
the artificial censoring. Notably, the last two steps are shared with 
RCT analyses that aim to estimate the effect of treatment under 
complete adherence or the per-protocol effect [13, 14]. While other 
methods such as landmark analysis and time-dependent Cox mod-
els can also eliminate immortal time bias, they come with other 
drawbacks that the CCW approach avoids. Namely, landmark 
analyses can suffer from selection bias by analyzing only the sub-
population that survived to the landmark time. Time-dependent 
Cox models estimate effects without grace periods, are difficult 

to apply for multi-component treatments, and yield hazard ratios 
rather than risk contrasts.

To those unfamiliar, the implementation and interpreta-
tion of CCW can be challenging. Thus, the objective of this 
commentary—endorsed by the International Society for 
Pharmacoepidemiology (ISPE)–is to de-mystify the CCW 
method through: (1) a narrative review of current applications 
in the cancer literature, (2) visual presentation and description 
of the CCW design and analytic components, (3) application of 
these visuals to several cancer case studies, and (4) discussion of 
important considerations and future directions. In addition, a 
glossary of commonly used terminology is provided.

2   |   Narrative Review of CCW Applications in 
Cancer

We first searched PubMed and EMBASE to identify observational 
studies published between January 2010 and February 2023 that 
applied the CCW method using two search strategies (detailed in 
Appendix 1). We then screened all resulting abstracts and titles to 
include only original research articles that appeared to focus on 
a cancer-related research question. Twenty-five articles were in-
cluded for full-text review, of which 7 were excluded because they 
did not apply the CCW method or were used in a context other than 
cancer. An additional five articles were “conceptual” in nature, 
largely explaining the value of the CCW method, but not focusing 
on its application to answer a specific research question. Finally, in 
Table S1, we extracted data from 13 articles that applied the CCW 
method to address a cancer-relevant question. One reviewer (TBR) 
conducted a full text review and extracted relevant data. A second 
author (CM) reviewed the included studies and confirmed and 
modified, if necessary, the data extraction. Details of the articles 
excluded from the search are included in Tables S2 and S3.

These 13 articles spanned multiple tumor types using mostly 
North American datasets, with the majority (n = 10) being pub-
lished since 2020, suggesting an increasing trend in the application 
of this method among cancer researchers. Populations of patients 
were well defined, and sometimes targeted groups of patients 
traditionally excluded from trials (e.g., older adults [10, 15–17] or 
with advanced cancer [18]). The interventions being compared 
varied from the receipt of a given treatment or test [10, 15–19] to 
the treatment setting (e.g., surgeon specialty or access to palliative 
care) [20, 21], duration [9, 22, 23], or timing [10, 24]. The main bias 
that researchers aimed to address by using the CCW approach was 
immortal-time bias. Seven manuscripts included a comparison 
to “conventional” observational analyses of the data (e.g., a time-
varying Cox model): results often differed from those of the CCW, 
depending on the strengths of specific biases.

3   |   Description and Visual Presentation of the 
CCW Design and Analytic Components

This section aims to provide an overview and visual depiction 
of the main components of the CCW method. Suppose we are 
interested in estimating the effect of receiving surgery within 
6 months (182 days) following a diagnosis of early-stage lung 
cancer on 1-year mortality among a population of older adults, 
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compared with not receiving such surgery. This example was 
the focus of a paper applying the CCW method using data from 
the National Cancer Registry in England linked to administra-
tive healthcare records [8]. To orient our visuals, we will include 
data from five hypothetical individuals as we work through the 
three steps of the CCW approach. We point the reader to the 
original reference [8] for a more comprehensive description of 
the technical details to apply the CCW method, including pro-
gram code for implementation in Stata and R.

Prior to implementing the CCW method, several preliminary 
steps must be taken. One must clearly outline the hypothetical 
target trial that would be conducted to answer the specific re-
search question. In Table 1, we specify the hypothetical target 
trial of the motivating example in early-stage lung cancer, de-
scribing the following trial components: design, aim, eligibility 
criteria, treatment strategies, treatment assignment, treatment 
implementation, outcomes, follow-up, censoring, adjustment 
variables, causal contrast, and estimands. This table then de-
scribes how each component of the hypothetical target trial can 
be emulated using observational data such as articulating the 
eligible study population (e.g., adults 70–89 years old diagnosed 
with early-stage lung cancer) and identifying the timepoint(s) 
of eligibility (e.g., the date of lung cancer diagnosis). Anchoring 
the start of follow-up, exposure assignment, and assessment of 
eligibility is a core feature of trial emulation using observational 
data [8, 25]. Then, one must explicitly define in detail the treat-
ment strategies being compared, including which medical com-
ponents (e.g., surgery) the treatment strategy will require and 
the timing of those components, hence defining a “grace period” 
(e.g., within 6 months or 182 days of lung cancer diagnosis). One 
must also decide whether an individual could meet eligibility 
multiple times during follow-up, and what types of events (e.g., 
emerging toxicity or contraindications) would excuse an indi-
vidual from receiving treatment while still being considered ad-
herent to the protocol. The presence of ill-defined interventions 
is problematic both for meeting causal inference assumptions 
and the statistical logistics of implementing the CCW method 
[12, 26, 27].

An individual-level study timeline and the associated raw data 
table for five hypothetical patients in the lung cancer observa-
tional study are pictured in Figure 1A,B. Note from Panel A, an 
analysis that starts follow-up at cancer diagnosis but uses future 
surgery to define exposure groups at baseline (diagnosis) would 
lead to immortal time bias—where the effect of surgery on mor-
tality is biased due to misclassification or exclusion of exposed 
person-time [7]. In our example, because we are using a grace 
period of 182 days, the individual who died at Day 112 without 
surgery would have been classified into the no surgery group, re-
gardless of whether they had been scheduled to undergo surgery, 
enriching this group with early deaths.

Considering the observational data available, the first step of 
the CCW method is to assign patients into exposure strategies 
according to their baseline data. Because baseline data can be 
compatible with more than one strategy, patients are assigned 
to all strategies with which their baseline data are compatible, 
effectively creating clones. In the lung cancer example, with two 
treatment strategies, this can be visualized as data from each 
individual being used twice and stacked on top of itself, as seen 

in Figure 2A. By “assign,” we mean create an exposure variable 
that takes on the value corresponding to treatment strategy A 
(i.e., underwent surgery within 182 days of diagnosis) for one 
entire set of clones—denoted in light blue in Panel A, and the 
value for treatment strategy B (i.e., did not undergo surgery 
within 182 days of diagnosis) for the other set of clones—denoted 
in dark blue in Panel B. Note that the crucial element of this step 
is that cloning is performed right at the start of follow-up and 
is done without respect to any information on exposure status 
ascertained during follow-up. As expected, after duplication, 
clones with treatment strategy A and treatment strategy B have 
the exact same baseline covariate profile (i.e., complete balance 
of measured confounders), because it is in fact the same under-
lying set of individuals.

The second step in the CCW method is to artificially censor 
the follow-up of each clone at the timepoint when it first be-
comes apparent in the data that it is no longer consistent with 
its assigned treatment, as shown in Panel B. In conventional 
time-to-event observational studies, individuals are censored at 
loss-to-follow-up or administrative end of study (“classic cen-
soring”). In our simplified example, none of the five patients 
were censored due to these reasons. Classic censoring events 
can still occur and be handled in CCW analysis, but the cen-
soring presently discussed is of a different variety: it is often 
referred to as “artificial censoring” because the analyst is im-
posing a censoring rule based on the treatment strategy under 
study and on the observed treatment data. When a clone devi-
ates from the assigned treatment strategy, its follow-up must be 
truncated. For instance, under treatment strategy A, “undergo 
surgical resection within 182 days of diagnosis,” if 182 days of 
data are observed and no surgery is performed for a particular 
individual, that individual's follow-up time for the treatment 
strategy A clone must stop at 182 days (the end of the grace pe-
riod to receive the intervention). It is at this time that we first 
become aware that the individual is not following treatment 
strategy A.

The third step in the CCW method is to weight the person-time 
of uncensored individuals in each arm using inverse probability 
weighting (IPW), as depicted in Panel A of Figure 3A,B. After 
cloning, the baseline confounders are balanced. However, be-
cause the artificial censoring that occurs is not random, weights 
need to be used to address selection bias from factors that influ-
ence treatment receipt (and thereby artificial censoring) and the 
outcome of interest. IPW works by reweighting individuals over 
time according to their time-varying confounders and censoring 
patterns (detailed further below). In the weighted population, 
assuming that the IPW model is correctly specified, treatment 
is independent of the measured confounders, eliminating post-
baseline confounding and selection bias due to those factors [13]. 
The artificial censoring in step two reflects the treatment selec-
tion observed among the study population, which is not random 
but rather a function of many variables that may also influence 
the outcome of interest. Models used to calculate IPW should 
include all prognostic baseline and post-baseline variables that 
predict adherence to the assigned strategy.

In the literature, two approaches for implementing the calcu-
lation of inverse probability weights have been used. In one 
implementation, time-varying inverse probability of treatment 
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is calculated in the original eligible population (prior to clon-
ing and censoring). This probability of treatment is then used 
to compute the weights (IPTW) in the resulting observations 
after cloning and censoring [9, 10, 12, 16]. The weighted out-
come model is fit using the cloned, censored, and weighted 
observations. It is often a pooled logistic regression model 

predicting outcome occurrence at a given time, conditional on 
a flexible functional form for time, treatment strategy, and the 
interaction of time and treatment strategy. The coefficients of 
this model can be used to predict cumulative incidence over 
follow-up. In another implementation, cloning and censoring 
are first applied and then the inverse probability of censoring 

TABLE 1    |    Specification and emulation of a target trial of surgery versus no treatment within 6 months of diagnosis, elderly lung cancer patients 
diagnosed in 2012 in England.

Component Target trial Emulated trial using RWD

Design Multicenter open-label two-parallel 
arm superiority randomized trial.

Cohort study

Aim Estimate the effect of receiving 
surgery within 6 months of a NSCLC 
diagnosis on 1-year overall survival

Same

Inclusion Non-Small Cell Lung Cancer patients 
diagnosed at age 70–89 years, 

at stage I or II, with a Charlson 
comorbidity index of 2 or less, a 
good performance status (≤ 2)

Same

Exclusion Patients with a first major surgery 
in the month prior to diagnosis

Same

Treatment strategies 1. Major surgery within 
6 months of diagnosis

2. No surgery in the 6 months 
after diagnosis

Same

Treatment assignment Patients are randomly assigned 
to either strategy

Patients are non-randomly assigned to a 
treatment strategy. Randomization is emulated 

via cloning of patients in both arms.

Treatment implementation None 6-month grace period

Outcome Death from all causes within 
a year of diagnosis

Same

Type of outcome Failure time Same

Follow up Follow up starts at diagnosis, 
equivalent to treatment assignment

Follow up starts at diagnosis, which does 
not correspond to treatment assignment

Censoring Loss to follow up, 
administrative censoring

Loss to follow up, administrative censoring

Adjustment variables Age at diagnosis (70–89 years), sex (1, 2), 
deprivation score (0–25), performance 

status (0, 1, 2), stage at diagnosis 
(1, 2), Charlson comorbidity index 

(0,1,2), emergency presentation (0,1)

Same

Causal contrast and 
analysis plan

Intention-to treat and per protocol effect
Analysis: Patients who deviate 
from the protocol are censored 

at time of deviation. A weighted 
Kaplan–Meier estimator was used 
to compute 1-year risk differences

Per protocol effect onlya

Analysis: In each arm of the cloned data, patients 
who deviate from the protocol are censored at time 
of deviation. A weighted Kaplan–Meier estimator 

was used to compute 1-year risk differences

Estimands Differences in one-year survival 
and restricted mean survival 
time at 1 year between arms

Same

aAn intention-to-treat (ITT) effect cannot be emulated because treatment intent was not available in the database and, at time zero, all participants adhered to both 
strategies and thus an ITT would not be informative.
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is calculated in the resulting population [8, 15, 19, 21]. Weights 
are most often estimated using pooled logistic regression or 
Cox proportional hazards regression. A weighted outcome 
model follows, as described above for the IPTW implemen-
tation. With either IPW implementation, the time-varying 
weights should remove the association between confounders 
and artificial censoring. IPWs can be stabilized and trun-
cated to prevent the influence of extreme weights. In stabili-
zation—using the IPCW implementation—the numerator of 
the weights is the probability of remaining uncensored con-
ditional on baseline covariates. Truncating weights involves 
setting any extreme weights to a ceiling value (e.g., weights 
greater than the 99th percentile set to weight value of the 99th 
percentile). Further detail on the IPTW approach is included 
in Appendix 2.

A visualization of the final, analytic dataset is depicted in Panel 
B, which emphasizes the data structure for the analytic dataset 
with multiple rows per individual (one for each segment of fol-
low-up time) and time-varying weights. Note that, the numeric 
values of the weights in the table are hypothetical, whereas an 
actual analysis would estimate these weights using information 
on several confounders.

Weighting aims to preserve the balance of covariates between 
treatment arms; whether this goal is achieved should be quan-
titatively assessed. Diagnostics for time-varying confounding 
adjustment are emerging [28]. One simplified approach is to 
calculate standardized mean differences for evaluating covari-
ate balance at the end of the specified grace period, as prior 
studies have done [8, 21]. However, this method is imperfect, 

FIGURE 1    |    Visual depiction (A) and associated dataset (B) for the motivating example. In this example, older adults diagnosed with early-
stage lung cancer are followed for up to 365 days to assess the outcome of overall survival. The two treatment groups are surgery within 182 days 
of diagnosis and no surgery within 182 days of diagnosis. Patients 1 and 2 underwent surgery at some point during follow-up; Patients 3–5 did not 
undergo surgery. Patients 1, 3, and 5 died within 365 days of diagnosis; Patients 2 and 4 were followed up until the end of the study (365 days) without 
an event.

FIGURE 2    |    Visual depiction of the cloning and censoring components of the CCW method. When using the CCW method, patient data are 
duplicated, and clones are assigned to receive either treatment A (surgery within 182 days of diagnosis) or treatment B (no surgery within 182 days) 
(A). Data are reviewed and patients are then artificially censored when they deviate from their assigned treatment strategy (B). For example, the 
treatment B clone for Patient 1 is artificially censored when Patient 1 undergoes surgery within 182 days. The treatment A clone for Patient 2 is 
censored at the end of 182 days because it does not undergo surgery during this time window; however, the Patient 2 treatment B clone is followed 
until the end of the study period (even though they underwent surgery after 182 days, that is consistent with treatment B).
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as individuals who experience the event prior to the end of the 
grace period are not included in the balance metrics.

These three steps constitute the CCW method, to be performed 
ahead of the data analyses planned to estimate the effect of treat-
ment on a given outcome. Any type of standard weighted esti-
mator approach can be taken, such as weighted Kaplan–Meier 
curves that yield predicted probabilities of survival to a specified 
timepoint [29]. Importantly, bootstrapping or a robust variance es-
timator must be used when generating 95% confidence intervals 
to preserve and account for the correlation between clones of the 
same person. M-estimation can alternatively be used.

A summary of all three steps of the CCW method can be re-
ported using a flowchart (Figure 4) in which the elements re-
lating to the selection of patients (e.g., eligibility criteria), their 
cloning in each of the arms considered, and their censoring are 
all clearly presented. We encourage researchers to use the tar-
get trial emulation shown in Table 1, the hypothetical patient-
level line diagrams shown in Figures 1–3, and the flowchart in 
Figure 4, to bring transparency to their study design and convey 
the steps of the CCW method to readers, increasing clarity and 
confidence in the approach.

4   |   Application of Visual Tools to Published 
Oncology Studies

The motivating example used in the prior section represents 
a single grace period application of the CCW approach. In the 

three examples below, we describe how prior studies compar-
ing alternative cancer prevention or treatment strategies have 
used the CCW method in more complex settings. These exam-
ples illustrate a case with multiple grace periods for multi-modal 
treatment, a static treatment strategy, and a dynamic treatment 
strategy—defined below.

5   |   Multiple Grace Periods: Definitive 
Chemoradiation Versus Trimodal Therapy in 
Esophageal Cancer

One of the major strengths of the CCW method is its ability to ac-
count for immortal time bias in research questions about multi-
modal treatments. For instance, a study used the CCW method to 
evaluate the effectiveness of trimodal therapy (chemoradiation 
and surgery) versus definitive chemoradiation (chemoradiation 
and no surgery) among older adults (66–79 years old) with lo-
cally advanced esophageal cancer [15]. In this example, because 
the treatment strategies included multiple, sequential interven-
tion components, multiple grace periods, and in turn, multiple 
censoring criteria and multiple IPW models were needed to 
implement the CCW method. Follow-up time for all patients 
began on the first day of chemotherapy treatment. Patients were 
then required to undergo radiation within 7 days (grace period 
1); patients who did not receive radiation were censored in both 
treatment strategies. After the first grace period, whether or not 
the patient underwent surgery within 6 months was assessed 
(grace period 2). Those in the trimodal therapy treatment arm 
were censored if they did not undergo surgery within that time, 

FIGURE 3    |    Visualization of the third component of the CCW method after hypothetical inverse probability weighting is applied (A) and the final 
analytic dataset (B). Panel A shows that for each treatment arm, compliant individuals (i.e., those who remain under follow-up and not artificially 
censored) are upweighted to represent individuals in their treatment group who are artificially censored. Weighting can be implemented via inverse 
probability of treatment weighting in the original data (before duplication) or via inverse probability of censoring weighting in the duplicated data. 
For example, Patient 1 assigned to treatment A (surgery) is upweighted after Patients 2, 4, and 5 are artificially censored for not undergoing surgery 
within 182 days. Patients 2–5 assigned to treatment B (no surgery) are upweighted after Patient 1 undergoes surgery and deviates from the assigned 
treatment strategy. Panel B shows the final analytic dataset structure after applying the weights, with a new person-time row for an individual clone 
anytime their weight changes. In this example, the impact of surgery within 182 days of diagnosis on 1-year survival is being assessed. All individuals 
are followed for up to 1 year after diagnosis. Appendix 2 provides more detail about the weight calculations for a mock patient.
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and those in the definitive chemoradiation treatment arm were 
censored when they underwent surgery within the window. 
Corresponding patient timeline diagrams for five hypothetical 
individuals are included in Figure S1A,B.

This study used observational data from SEER-Medicare linked 
data, from which treatment intention is unavailable, calling for 
the CCW approach. At the start of chemotherapy treatment, it 
was not known whether an individual planned to have radia-
tion and surgery later. Additionally, due to the poor prognosis 
of locally advanced esophageal cancer, there was the possibility 
that patients who planned to undergo surgery would die before 
receiving the treatment, meaning the potential for immortal 
time bias would be present if treatment groups were defined at 
baseline using future surgery status.

5.1   |   Static Treatment Strategy: Continue Versus 
Stop Screening Mammography After Age 70

Another example of how the CCW method can be used is with 
a static treatment strategy, defined as a treatment that is de-
livered over time, but it is known at the onset when the treat-
ment will be delivered (i.e., following a pre-specified schedule) 
[30]. One example of a research question evaluating a static 
treatment strategy is whether continuing annual breast cancer 
screenings among women 70–84 years old reduces breast cancer 
mortality, compared to stopping screening [9]. For this study, 
treatment strategy A (annual screening mammography) con-
sisted of receiving annual mammography throughout follow-up 
(up to 8 years, in the absence of a breast cancer diagnosis), and 
treatment strategy B (stop screening) consisted of not receiv-
ing further screening. Both strategies allowed the receipt of a 
diagnostic mammogram at any time. In this application, clon-
ing was necessary because all women were screened at baseline 

and therefore, for the first year of follow-up (the next decision 
point for screening), were compliant with both strategies. To 
estimate the effect under full adherence, women in treatment 
strategy A (annual screening) were censored 14 months after the 
last screening if they had not received a subsequent one by then, 
and women in treatment strategy B (no screening strategy) were 
censored at the time they received a screening mammography.

Because of their interest in understanding the effects of age-
based screening strategies, the target trial process was repeated 
in 15 cohorts (one for each age from 70 to 84 years). Each woman 
could contribute to multiple cohort, if she met the cohort-specific 
eligibility criteria, and per-protocol analyses were conducted. 
Corresponding patient timeline diagrams for five hypothetical 
individuals are included in Figure S2A,B.

5.2   |   Dynamic Treatment Strategy: Timing 
of Androgen Deprivation Therapy Initiation in 
Prostate Cancer

A third example of how the CCW method can be used is with 
a dynamic treatment strategy, where the decision to undergo 
treatment is influenced by health status or disease progres-
sion, which can change over the course of follow-up. For ex-
ample, the comparative effectiveness of immediate initiation 
(treatment strategy A) versus deferring initiation of androgen 
deprivation therapy until disease progression (treatment strat-
egy B) was studied among men with localized prostate can-
cer who experienced an asymptomatic PSA-only relapse [10]. 
Immediate initiation was defined as starting androgen depri-
vation therapy within 3 months of PSA relapse. Deferred ini-
tiation was defined as starting androgen deprivation therapy 
within 3 months of disease progression (defined as the appear-
ance of symptoms, metastases or a short PSA doubling time) 

FIGURE 4    |    Study flow diagram reporting the core components of the CCQ method for the motivating example by Maringe et al.
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or at least 2 years post-PSA relapse. In this application, clon-
ing was necessary because there could be patients who were 
compliant with both strategies for a period during follow-up: 
those who had not initiated treatment in the first 3 months 
in the absence of a disease progression. They were compliant 
with the immediate treatment because there is a grace period 
of 3 months to start treatment, and also with the deferred 
treatment because they had not progressed. To estimate the 
effect under complete adherence, patient clones in treatment 
strategy A were censored 3 months after PSA relapse if they 
had not yet started treatment, and patient clones in treatment 
strategy B were censored 3 months after disease progression 
or 2 years after baseline if they had not yet started treatment. 
Because of the nature of these dynamic treatment strategies 
and the potential for treatment-confounder feedback, no stan-
dard method to address time-related biases, like landmark 
analysis or conventional regression, would have been able to 
answer this research question. Corresponding patient time-
line diagrams for eight hypothetical patients are included in 
Figure S3A,B.

Other applications of the CCW method (including examples out-
side of cancer) are growing and incorporate study designs where 
there are more than two treatment arms [31], treatments with 
very short grace periods [18], and studies estimating the effect of 
treatment duration [11].

6   |   Discussion

Over the past 20 years, a robust literature has described the 
issue of time-related biases in observational studies [1, 2]. 
Several analytic or design strategies for attributing person-
time and avoiding this bias exist, including the landmark 
method and time-dependent Cox models. The advantages of 
the emerging CCW method over these traditional tools have 
been elaborated in several recent works [3–5]. Essentially, the 
CCW method allows a design and analysis that maps directly 
to a hypothetical target trial by aligning eligibility assess-
ment, treatment assignment and the beginning of follow-up, 
which additionally helps clarify the estimand(s) of interest. 
Additionally, it allows estimation of absolute measures of 
treatment effects, a preferred metric by patients and investiga-
tors [32], as well as adjustment of time-varying confounding 
in the presence of treatment-confounder feedback. Of note, 
cloning is more statistically efficient than randomly assigning 
individuals at baseline, an approach that also appropriately 
addresses the potential for immortal time when eligible indi-
viduals are compliant with more than one treatment strategy 
at baseline [9].

While this commentary provides an overview of the concep-
tual foundations for the CCW method and a visual descrip-
tion of its components, there are additional considerations 
required for robust implementation. First, clinical input is 
critical to ensure that the specified strategies reflect relevant 
clinical practice standards by specifying and incorporating 
contraindications into treatment strategy definitions (e.g., 
events that would excuse an individual from receiving treat-
ment, but their time would still be considered adherent to the 
strategy) and by informing the length of the grace period that 

represents real-world clinical practice. For example, in the 
screening mammography study described above [9], investiga-
tors specified that women who developed an incident cancer 
during follow-up were excused from further screening in the 
“continue screening” arm, and in the esophageal cancer study 
above, the length of the first grace period was 7 days because 
delaying radiation beyond that time would not be standard 
practice, and the second grace period was 6 months because 
that is the usual timeframe to receive surgery for esophageal 
cancer. Second, for simplicity, we have disregarded the role of 
loss to follow-up or “classic censoring” in our visualizations. 
If one believes that this form of censoring is due to factors 
that may also influence the outcome (e.g., moving out of the 
country or state), distinct inverse probability of (classical) cen-
soring weights can be estimated to handle differential loss-to-
follow-up, provided such factors are accurately measured in 
the data. In practice, inverse probability weights can be com-
puted and multiplied together to account for both classic and 
artificial censoring in the analysis. Third, we did not discuss 
the selection of time units for each of the specified example 
studies. Time can be discretized by various units (e.g., days, 
weeks, months) and the decision of the unit may be influenced 
by, for example, the length of the grace period and the pre-
cision of data available (e.g., exact dates versus month-level 
reporting). Of note, if the goal is to use a pooled logistic model 
to approximate a hazard ratio, the risk of an event per unit of 
time must be small (< 10%) [14]. Finally, we have not included 
statistical software for implementation of the CCW method. 
While other research groups have made example code avail-
able for SAS, R, and STATA [8, 16, 19], further efforts should 
include the development of statistical packages that facilitate 
broader implementation of the CCW method and standard-
ized tools for reporting methodological choices made while 
implementing CCW. These kinds of tools would enhance the 
transparency and reproducibility of studies implementing the 
method. We further encourage researchers to share their ana-
lytic code (e.g., R, Stata, SAS) on publicly available platforms 
(e.g., GitHub).

There are also important limitations of the CCW method 
that are worth noting. First, as with all observational studies, 
those implementing the CCW method are vulnerable to un-
measured or residual confounding. This limitation is inclusive 
of both baseline and time-varying confounders that may be 
missing entirely or measured with error. Second, it is import-
ant to recognize that some treatment strategies, particularly 
those defined by “initiate intervention X prior to time t,” may 
be ill-defined, as there are several possible ways to be adherent 
to a given strategy. In our initial example, one of the treatment 
strategies was to initiate surgery within 6 months (182 days) 
following diagnosis for early-stage lung cancer. Individuals 
can be adherent to that strategy if they had surgery on Day 
45 or Day 180 after diagnosis (among many other days). If the 
effect of the surgery depends on when it is initiated within 
this window, the interpretation of the effect estimate can be 
complicated and may require further clarification. For exam-
ple, a further specification could be to initiate surgery within 
6 months following diagnosis for early-stage lung cancer at 
a uniform rate over the grace period. This issue may not be 
of major concern when grace periods are short, but further 
research is needed to describe and formalize these complex 
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treatment effects. Finally, the CCW method can be quite sen-
sitive to near violations of the positivity assumption, where 
certain combinations of confounding variables may lead to 
few individuals (of even none) remaining in a particular expo-
sure group, rendering the weights to be large and unstable. In 
such instances, one may want to stabilize the weights or use 
outcome-model focused approaches like g-computation.

The application of the CCW method within the target trial em-
ulation framework is gaining traction in epidemiologic circles. 
In this commentary, we sought to de-mystify the CCW method 
for cancer researchers by describing and presenting its core 
components in an accessible and digestible format, leverag-
ing visualizations and examples from cancer-relevant studies. 
We hope that the visuals developed for this commentary assist 
cancer researchers in designing and communicating their own 
implementations of the CCW method that will further catalyze 
the dissemination of high-quality and rigorous observational re-
search using RWD.
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Precis

We introduce the clone-censor-weight (CCW) method for cancer re-
searchers by describing and presenting its core components in an ac-
cessible and digestible format, using visualizations and examples from 
cancer-relevant studies. The CCW method is a powerful tool for de-
signing observational studies in cancer that are free from time-related 
biases and successfully, to the extent possible, emulate features of a ran-
domized clinical trial.
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