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BACKGROUND: Depressive symptoms lead to a serious public health burden and are considerably affected by the environment.
Land use, describing the urban living environment, influences mental health, but complex relationship assessment is rare.
OBJECTIVE: We aimed to examine the complicated association between urban land use and depressive symptoms among young
adults with differential land use environments, by applying multiple models.
METHODS: We included 1804 individual twins from the FinnTwin12 cohort, living in urban areas in 2012. There were eight types of
land use exposures in three buffer radii. The depressive symptoms were assessed through the General Behavior Inventory (GBI) in
young adulthood (mean age: 24.1). First, K-means clustering was performed to distinguish participants with differential land use
environments. Then, linear elastic net penalized regression and eXtreme Gradient Boosting (XGBoost) were used to reduce
dimensions or prioritize for importance and examine the linear and nonlinear relationships.
RESULTS: Two clusters were identified: one is more typical of city centers and another of suburban areas. A heterogeneous pattern
in results was detected from the linear elastic net penalized regression model among the overall sample and the two separated
clusters. Agricultural residential land use in a 100m buffer contributed to GBI most (coefficient: 0.097) in the “suburban” cluster
among 11 selected exposures after adjustment with demographic covariates. In the “city center” cluster, none of the land use
exposures was associated with GBI, even after further adjustment with social indicators. From the XGBoost models, we observed
that ranks of the importance of land use exposures on GBI and their nonlinear relationships are also heterogeneous in the two
clusters.
IMPACT:

● This study examined the complex relationship between urban land use and depressive symptoms among young adults in
Finland. Based on the FinnTwin12 cohort, two distinct clusters of participants were identified with different urban land use
environments at first. We then employed two pluralistic models, elastic net penalized regression and XGBoost, and revealed
both linear and nonlinear relationships between urban land use and depressive symptoms, which also varied in the two
clusters. The findings suggest that analyses, involving land use and the broader environmental profile, should consider aspects
such as population heterogeneity and linearity for comprehensive assessment in the future.
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INTRODUCTION
Depressive symptoms are very common and reflect a chronic,
complex, and multifactorial mental health condition. The burden
of depressive symptoms is growing, especially among younger
people. There has been a large rise in the incidence of depressive
episodes or disorders among young adults across multiple
countries [1–3]. The COVID-19 pandemic induced a negative
mental health impact and increased the prevalence of depressive
symptoms among young adults [4, 5]. Moreover, depressive

symptoms were associated with a higher odds of risky behavior
such as substance use and self-harm, which resulted in further
psychological and physical health problems [6]. Although there is
a genetic predisposition to occur more depressive symptoms,
which a meta-analysis in 2020 estimated a heritability of 37% [7],
several twin studies across countries have identified the vital role
of environmental influences on mental health, including depres-
sive symptoms among young adults, inspiring etiological con-
sideration of various environments [8, 9].
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Land use describes the human utilization of land, involving the
transformation from undeveloped areas into residential and living
environments. Urbanization is a pivotal driving force for the
change of current land use systems [10], and urban planners
consider multiple concepts such as suitability, competitiveness,
need diversity, or resource scarcity to evaluate land use [11]. A
recent UK biobank study identified specific urban environmental
profiles including urban land use density that affect mental health
through the regional brain volume and pertinent biological
pathways [12]. A Finnish study found that variables referred to
the urban environment including land use related to a low
incidence of serious mental illnesses [13]. Therefore, advancing
liveable initiatives and shaping diverse land use is able to promote
healthy lifestyles, urban amenities, and nature conservation to
ultimately improve human health [14, 15]. Some studies have
specifically addressed the relationship between land use, via
different indeces, and mental health/status, but their results were
inconsistent [16–18]. Existing indices have some limitations, such
as insensitiveness to capture the interaction between different
types of land use [19]. Inconsistent evidence reflects the
complexity of the land use effect, demanding further sophisti-
cated analysis, while we will encounter difficulties such as high-
dimensionality and small effect sizes [20]. Instead of conventional
regression models with a single index, interpretable and robust
multi-exposure models are recommended. Ohanyan and collea-
gues have applied some machine learning models, illustrated their
characteristics, and employed them in a study on a wide range of
urban exposures and type-2 diabetes [21, 22]. Some simulation
and review studies have compared statistical approaches and
assessed model performance [23–25]. However, this type of
research is relatively rare on mental health.
To fulfill the current research gap, we hypothesized there is a

complex relationship between land use, unable to be quantified
by conventional indices, and depressive symptoms with three
objectives: a) to cluster participants who shared a similar pattern
of urban land use; b) to assess both the linear and nonlinear
relationships between them in young adulthood; and c) to
observe the possible differences in these relationships between
clusters.

SUBJECTS AND METHODS
Study participants
The participants were from the FinnTwin12 cohort, which is a population-
based prospective cohort among all Finnish twins born between 1983 and
1987, and their parents. At baseline, 5522 twins were invited and 5184
twins replied to our questionnaire (age 11–12, wave one), and they
compose the overall cohort. All twins were invited to participate in the first
follow-up survey with 92% retention at age 14 (wave two). Moreover, at
age 14, 1035 families were invited to take part in an intensive substudy
with psychiatric interviews, some biological samples, and additional
questionnaires, and 1854 twins participated in these interviews. They
were also invited to a second intensive survey as young adults, with a
participation rate of 73% (n= 1347 individual twins), and completed the
detailed young adulthood questionnaires and interviews (part of wave
four). In addition, all of the twins in the overall cohort completed general
age 17 questionnaires (wave three) and twins from the non-intensive study
completed young adult questionnaires (wave four). Wave four was
conducted from 2004 to 2012, in which overall 4824 individual twins
were invited and 3404 replied. In this study, we included twins who
participated in wave four. An updated review of this cohort was published
recently [26].

Measures
Depressive symptoms. In this study, the short-version General Behavior
Inventory (GBI) was used to evaluate depressive symptoms among twins in
young adulthood [27]. It is a self-reported inventory designed to identify
mood-related behaviors, which is composed of 10 questions with a 4-point
Likert scale from 0 (never) to 3 (very often) to query the occurrence of

depressive symptoms [28]. The total score ranges from 0 to 30, and a
higher score implies more depressive symptoms exist. To validate the GBI,
we compared it to a Diagnostic and Statistical Manual of Mental Disorders-
IV diagnosis of major depressive disorder (MDD) assessed by the Semi-
Structured Assessment for the Genetics of Alcoholism (SSAGA) interview
from the intensive study [29]. In a logistic regression model, the GBI score
in young adulthood strongly predicted MDD, with the area under the
receiver operating characteristic curve (AUC) of 0.8328 (among twins
included in this study’s analysis).

Land use. The EUREF-FIN geocodes of twins from birth to 2021 were
derived from the Digital and Population Data Services Agency, Finland. We
used geocodes in 2012 to merge the land use exposures, derived from
Urban Atlas (UA) 2012, to the twin data. UA is a part of land monitoring
services to provide reliable, inter-comparable, high-resolution land use
maps in the European Union and European Free Trade Association
countries in 2006, 2012, and 2018 [30]. We used UA 2012 because it covers
more areas, over 700 larger functional urban areas, and contains more
detailed categories of land use information, compared to UA 2006. Land
use exposures included the percentage of 8 types of land use (high-density
residential, low-density residential, industrial and commercial, infrastruc-
ture, urban green, agricultural residential, natural, and water) in an area of
100, 300, and 500m radius buffer zones for each geocode in urban Finland
(total of 24 exposures).
Additionally, we also calculated the land use mix index in different

buffers, which described the diversity of land uses through the Shannon’s
Evenness Index. It provides information on area composition and richness,
covering different land use types and their relative abundances. The
equation is defined as follows [31]:

land use mix index ¼ �
Xn
i¼1

Pi ´ ln Pi

 !
=ln n

Pi is the percentage of each type of land use in zone i; n is the number of
land use types. It ranges from 0 to 1, and a higher value indicates a more
balanced distribution of land between the different types of land use.

Covariates. Seven covariates (demographic) were defined a priori: sex
(male, female), zygosity (monozygotic (MZ), dizygotic (DZ), unknown),
parental education (limited, intermediate, high), smoking (never, former,
occasional, current), work status (full-time, part-time, irregular, not work-
ing), secondary level school (vocational, senior high school, none), and age.
The latter four variables came from the young adulthood survey. Parental
education was based on maternal and paternal reports, while zygosity was
based on DNA polymorphisms and/or a validated zygosity questionnaire
[32].
Another four social indicators: age structure (proportion of people over

age 18 in the total population), education level (bachelor´s/equivalent or
above of the population over age 16 (%)), unemployment (unemployment
rates among people who were between 25 and 54 years old (%)), and
income level (proportion of households in highest income quartile in the
country) were introduced to account for socioeconomic status segregation.
We derived social indicators in 2012 at the postal code level of the twins’s
residence at that time from Statistics Finland.

Analysis
Preparation and description. We only included those twins who had
available land use exposures in 2012 in urban areas (as defined above),
indicating that they lived in the urban areas in Finland, and provided GBI
assessment in young adulthood, in order to have a larger sample size and
have the two measurements be as close as possible on the time scale. A
total of 1804 individual twins (589 twin pairs and 626 individual twins)
were included and the mean age in providing GBI assessment was 24.07
years (around 2007–2011). Due to the skewness of the GBI score, we added
one to the GBI score and log-transformed it for the following analysis. A
correlation matrix was drawn between land use exposures. Then, we
proposed several approaches to assess the relationship between land use
exposures and depressive symptoms.

Unsupervised clustering. To group twin individuals who have similar land
use in an exploratory way, we used unsupervised K-means clustering. The
K-means clustering method employs a non-hierarchical partitional algo-
rithm. It calculats the total within-cluster variation as the sum of the
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squared Euclidean distance between each sample and the corresponding
K-number random-assigned centroid in each cluster (k). Xik is the ith

observation belonging to cluster (k= 1, 2, …., K) and nK is the number of
observations in cluster k. The overall within-cluster variation is defined as
follows [33]:

XK
k¼1

Xnk
i¼1

Xik � 1
nK

Xnk
i¼1

Xik

 !2

The process stops when the criterion is met (smallest overall within-
cluster variation) [33]. It is one of the simplest and fastest clustering
methods, and is also able to handle outliers or inappropriate variables
[34, 35]. Only the 24 land use exposures were included in the clustering
algorithm. We used the Silhouette method to estimate the optimal number
of pre-specified cluster [36], and two clusters were identified (Supple-
mental Fig. 1). The R package “Factoextra” was used [35].

Pluralistic analysis. We split the twin participants into training and
testing subsets. In full twin pairs, we performed a 1:1 random split within
the pair. The remaining individual twins all went into the training subset.
The training sample size was 1215 and the testing sample size was 589,
and the size in each cluster varied (Supplemental Table 1). By the
splitting process, we do not need to consider the statistical effect of
complex sampling cluster effects by twin pair status since all individuals
in both samples are unrelated. We chose two types of models and
adjusted covariates to evaluate the risk estimation of 24 land use
exposures (j).
First, the linear elastic net penalized regression model was applied for

feature selection, which uses a hybrid of the lasso and ridge penalized
methods to fit the generalized linear model [37]. It encourages the
grouping effect that correlated variables tend to be in or out of the
model together with similar coefficients, and then variables are selected
based on their predictive power in the context of penalty [38].
Coefficients are shrunk, even to zero, to promote sparsity and reduce
multicollinearity [39]. It is very useful in datasets with highly correlated
variables. A typical linear regression model based on N participants with
the combined penalized term is defined as follows [39]:

min
β0 ;β

1
2N

XN
i¼1

yi � β0 � xTi β
� �2 þ λ

Xp
j¼1

1� α

2

� �
β2j þ α βj

�� ��� � !

yi is the dependent response and xi is the independent factor at
observation i. λ is a positive regularization parameter. β0 and β are scalar
and p-vector coefficients, respectively. We set the α, ranging from 0.1 to
1.0, as a tuning parameter, for the penalty. The final models were selected
by 10-fold cross-validation with minimal criteria to determine the optimal
degree of penalization [37]. There were two adjustment plans: 1)
demographic covariates (minimal), and 2) demographic covariates and
social indicators (further). We forced the demographic covariates and social
indicators into the models, without penalty, to fully adjust them. Stata
package “elasticnet” was used.
Further, to assess the nonlinear relationship, the supervised machine

learning model eXtreme Gradient Boosting (XGBoost) was used. It is a tree-
based gradient boosting technique, utilizing the weights of trees, which is
good at predicting and reduces the risk of overfitting [40, 41]. The
objective function of XGBoost starts with two parts: a loss function and a
regularization term, and we aim to obtain the optimal output value (Ovalue)
to minimize the function, defined as follows:

Xn
i¼1

L yi ; p
t�1
i þ Ovalue

� �þ γT þ 1
2
λO2

value

pt�1
i is the previous prediciton of tree t at observation i. T is the number

of leaf nodes in a tree, and γ and λ are the definable penalty factors to
avoid overfitting. Then, we rewrite the loss function according to the 2nd
Taylor Approximation:

L yi ; P
t�1
i þ Ovalue

� � � L y; pið Þ þ d
dpi

L y; pið Þ
� �

Ovalue þ 1
2

d2

dp2i
L y; pið Þ

� �
O2
value

¼ L y; pið Þ þ gOvalue þ 1
2
hO2

value

L y; pið Þ is the loss function of the previous prediction, and its first and
second derivative are labeled as g and h, respectively. The optimum output

value could then be derived with G and H (sum of g and h) as:

Ovaluej ¼ � 1
2

Xt
j¼1

G2
j

Hj þ λ
þ γT

The detailed mathematical model and algorithm are described in
previous literature [42]. This model is able to characterize interactions and
nonlinearity [21]. The tuning hyperparameters were calibrated by
parallelizable Bayesian optimization based on seven initialization evalua-
tions and multiple epochs, using the R package “ParBayesianOptimization”
[43, 44]. We ran training XGboost models with 3000 rounds at first, then
the optimal number of rounds (n) was selected by mean-squared error
(MSE) as the following equation:

MSEn < 0:99 � 1
20

MSEn�1 þ ¼ þMSEn�21ð Þ

The final XGBoost analysis was conducted with all hyperparameters
using the R package “xgboost” [40]. Finally, we used the Shapley (SHAP)
value to interpret and visualize the results from the XGboost machine
learning model with higher transparency by the R package “SHAPforxg-
boost” [45, 46], and it was commonly used in previous studies [21, 22, 47].
The SHAP value unifily measures the importance of each land use exposure
on GBI from the XGBoost model based on the cooperative game theory
[45]. The direction of SHAP value indicates whether each land use exposure
impacts positively or negatively the prediction for GBI. The XGboost model
was conducted twice. First, we put all land use exposures and
demographic covariates into the model, then social indicators were added.
Models were performed among overall participants and in the two

clusters. We used root-mean-squared error (RMSE) to measure model
performance in the training and testing subsets, which is a weighted
measure calculated between forecast and observed values.

Sensitivity analysis. To control the potential genetic effect, we further
performed the linear mixed model, in which the twin pair was assigned as
the fixed term in the model. This model was to specify that the land use
exposures did not vary between cotwins and to compute their within-pair
effect. Two adjustment plans were employed, excluding zygosity and
parental education which do not vary within pairs. Then, we conducted a
post-hoc linear regression between the land use mix index and log-
transformed GBI score, which aims to compare with our novel findings.
Two adjustment plans were employed and the cluster effect of sampling
based on families of twin pairs was controlled by the robust standard error.
A p value less than 0.05 was considered statistically significant and 95%
confidence intervals (CI) are reported.

RESULTS
K-means clustering and descriptive statistics
Figure 1 depicts the distribution of each land use category overall
and in the two clusters. Cluster 2 had a higher percentage of high-
density residential land use, while Cluster 1 had a higher
percentage of low-density residential land use regardless of the
buffer radii of the twins’ location. Supplementary Fig. 2 shows the
twins’ location in the greater Helsinki areas (as an example), and
twins from Cluster 2 lived in more urbanized areas (often close to
city or town centers), while twins from Cluster 1 were more
suburban. Variable names and details are shown in Supplementary
Table 2. We also calculated the simple ratios of means between
the two clusters and found low-density residential, agricultural
residential, and natural land use in a 100m buffer have notably
“relative” differences between the two clusters (ratio>10).
According to the correlation matrix based on the training subset
(Supplemental Fig. 3), the same land use with different radii of the
buffer zone was highly correlated. High-density and low-density
residential land use were negatively correlated. Notably, there was
a higher number of cotwins from MZ pairs who both lived in
Cluster 1 than lived discordantly, compared to DZ pairs
(Supplementary Table 3).
Table 1 shows the distribution of characteristics overall and in

the two clusters. Overall, the majority of twins are female (58.7%),
dizygotic (61.3%), and reported never smoking (55.1%) in the
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young adulthood questionnaire. Additionally, 48.8% and 67.7% of
twins reported that they were in full-time work and had attended
senior high school, respectively. The majority (51.1%) of twins’
parents had limited education levels (less than senior high school).
The means of GBI score were 4.4, 4.1, and 4.7 among overall
participants, those in Cluster 1 (suburban), and in Cluster 2 (city
center), respectively, and their distributions are presented in
Supplementary Fig. 4. Unsupervised K-means clustering did not
take into account these demographic covariates. We observed
significant differences in smoking, working status, secondary level
school, and parental education between the two clusters by Chi-
squared test or univariable linear regression accounting for twin
sampling. There were more twins who currently smorked, worked
full time, and attended vocational schools in Cluster 1 than in
Cluster 2, but parents in Cluster 2 had a lower percentage of
receiving limited education. Addtionally, in all four social
indicators, there were significant differences between clusters.

Linear elastic net regression model
After minimal adjustment of demographic covariates, in Cluster 1
(suburban), 11 land use exposures were significant enough to be
captured by the linear elastic net regression model in assessing
their relationship with GBI (Table 2). The agricultural residential
land use in a 100m buffer increased log-transformed GBI scores
with the largest penalized coefficient (coefficient: 0.097). After
further adjustment with the social indicators, the number of
selected land use exposures increased to 17, and the new
exposures were: urban green and natural land use in both 100 and
500m buffers, and high-density residential and water land use in a
300m buffer. The penalized coefficient of the agricultural
residential land use in a 100 m buffer was attenuated (coefficient:
0.067), while it still had the largest effect size and was positively
correlated with GBI. Surprisingly, there were no land use
exposures remaining in the Cluster 2 (city center) model in

neither adjustment phase. Supplemental Table 4 presents the
results in the overall model, and after further adjustment, there
were also more land use exposures selected. The pattern of
coefficients including the effect size and direction was relatively
heterogeneous with Cluster 1. The coefficients for low-density
residential land use in a 100m buffer were the same (coefficient:
−0.011) between the overall and Cluster 1 models after minimal
adjustment.

Refitting to linear mixed model
According to the selected land use exposures from the aforemen-
tioned elastic net regression, we refitted them into linear mixed
models to assess their within-pair effect on log-transformed GBI
scores (Supplementary Table 5). In Cluster 1, after minimal
adjustment, commercial and industrial land use in a 300m buffer
were significantly and positively associated with GBI, while the effect
attenuated after further adjustment. In the overall model, after both
minimal and further adjustment, higher low-density residential land
use in a 100m buffer significantly reduced the GBI.

XGBoost model
We listed the top five most important factors with SHAP values in
each cluster’s XGBoost model. After minimal adjustment (Fig. 2A), in
Cluster 1 (suburban), the most important land use exposure was
natural land use in a 100m buffer, and the second was commercial
and industrial land use in a 300m buffer. After further adjustment,
natural land use in a 100m buffer became the most important
(Fig. 2B). In Cluster 2 (city center), the most important land use
exposure was always infrastructure land use in a 300m buffer after
minimal (Fig. 2C) and further adjustment (Fig. 2D). Covariates were
not listed and are not shown in the figure. The curve of SHAP values
suggested nonlinear attribution of each land use exposure on GBI.
Notablely, the curves of infrastructure land use in a 300m buffer with
SHAP values are also similar after minimal or further adjustment.

Fig. 1 Histogram of percentage of land use exposure among overall participants, those in Cluster 1, and in Cluster 2.
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There was a flat incline of SHAP value between 0 and ~10%. Then,
the value sharply increased when its percentage passed ~10% and
the impact of infrastructure land use in a 300m buffer on the
prediction for GBI switched from negative to positive. After the
percentage was greater than ~20%, the curve slowly increased. The
results of overall XGBoost models are presented in Supplemental
Fig. 5. After minimal adjustment, same as Cluster 2, the most
important land use exposure is infrastructure land use, but, in a
100m buffer (Supplementary Fig. 5A). After further adjustment, the
most important becames natural land use in a 100m buffer
(Supplementary Fig. 5B).

Model performance and comparison
The standard deviations (SD) of the log-transformed GBI score
were 0.8825, 0.8851, and 0.8774 among overall, Cluster 1’s and

Cluster 2’s twins, respectively. The training and testing RMSE are
shown in Supplementary Table 6. There are no major differences
between the two types of models and clusters, and they mostly
have lower SDs than those of the log-transformed GBI score,
implying good model performance.

Linear regression with the land use mix index
The results of linear regression in the overall and the two
separated cluster models are presented in Table 3. In the crude
Cluster 1 (suburban) model, a higher land use mix index in a
300m buffer was significantly associated with higher log-
transformed GBI scores (beta: 0.51, 95% CI: 0.02, 1.01). After either
minimal or further adjustment, there was no significant associa-
tion, which implies the need for complex assessments between
land use and GBI.

Table 1. Characteristics of all included twins overall and in the two clusters. The p values are for differences between Clusters 1 and 2 by Chi-squared
test or univariable linear regression accounting for twin sampling.

Characteristic N (%) / Mean (SD) P value (between
clusters)

Overall (individual twin
n= 1804)

Cluster 1 (individual twin
n= 736)

Cluster 2 (individual twin
n= 1068)

GBI in young adulthood 4.42 (4.7) 4.05 (4.4) 4.67 (4.8) 0.01

Demographic covariates

Sex 0.16

Male 745 (41.3) 289 (39.3) 456 (42.7)

Female 1059 (58.7) 447 (60.7) 612 (57.3)

Zygosity 0.92

Monozygotic 615 (34.1) 252 (34.2) 363 (34.0)

Dizygotic 1105 (61.3) 448 (60.9) 657 (61.5)

Unknown 84 (4.7) 36 (4.9) 48 (4.5)

Smoking

Never 994 (55.1) 405 (55) 589 (55.2) 0.03

Former 191 (10.6) 78 (10.6) 113 (10.6)

Occasional 205 (11.4) 66 (9.0) 139 (13.0)

Current 414 (23.0) 187 (25.4) 227 (21.3)

Work <0.0001

Full-time work 880 (48.8) 409 (55.6) 471 (44.1)

Part-time work 280 (15.5) 94 (12.8) 186 (17.4)

Irregular work 239 (13.3) 76 (10.3) 163 (15.3)

Not working 405 (22.5) 157 (21.3) 248 (23.2)

Secondary level school <0.0001

Vocational 486 (26.9) 262 (35.6) 224 (21.0)

Senior high school 1222 (67.7) 439 (59.7) 783 (73.3)

None 96 (5.3) 35 (4.8) 61 (5.7)

Parental education <0.0001

Limited 922 (51.1) 429 (58.3) 493 (46.2)

Intermediate 410 (22.7) 155 (21.1) 255 (23.9)

High 472 (26.2) 152 (20.7) 320 (30.0)

Age 24.07 (1.7) 24.15 (1.7) 24.01 (1.7) 0.10

Social indicatorsa

Age structure (%) 82.7 (7.2) 78.2 (5.8) 85.8 (6.4) <0.0001

Education level (%) 25.8 (9.0) 21.8 (8.0) 28.5 (8.6) <0.0001

Unemployment (%) 9.6 (4.0) 8.9 (4.1) 10.0 (3.9) <0.0001

Income level (%) 25.5 (10.0) 26.3 (10.3) 24.9 (9.8) 0.01
aThe detailed description of social indicators was introduced in the “Subjects and Methods” section.
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DISCUSSION
Based on 1804 twins from the FinnTwin12 study with information
on residential geocodes linked to land use characteristics, we
identified two clusters of the land use environment the twins lived.
Strengthened by multiple statistical approaches, both linear and
nonlinear relationships between land use and depressive symp-
toms were discovered to exist. In the linear elastic net penalized
regression model, among overall twins and Cluster 1 (suburban)’s
twins, there was a heterogeneous pattern in selected features,
effect sizes, and effect directions. In the Cluster 1 model,
agricultural residential land use in a 100m buffer was associated
with depressive symptoms with the largest relative effect size. After
controlling for the influence of the social environment, more land
use exposures were found to be associated with depressive
symptoms. With further control of the genetic effect, based on the
refitting mixed models, no land use exposure was strongly
associated with depressive symptoms, implying a potential

inheritable effect behind. In contrast, no land use exposures were
significant enough to be attributed to depressive symptoms in
Cluster 2, no matter the adjustment for the social environment,
which was typical of city or town centers. The XGBoost model
offered a profound understanding of the multifaceted relationships
regarding the intricate interplay between various land use
measures and their relative importance on depressive symptoms.
The importance ranks and nonlinearity of land use exposures on
depressive symptoms were heterogeneous between the overall,
Cluster 1, and Cluster 2 models. The most important were
commercial and industrial land use in a 300m buffer in Cluster 1
and infrastructure land use in a 300m buffer in Cluster 2, after
adding social indicators in. As a hypothesis-generating study,
elements such as population heterogeneity, environmental inter-
action, and characteristics of the effect (such as linearity) should be
considered more in future analyses between land use, as well as
the broad urban environment, and depressive symptoms.

Table 2. Multiple-exposure elastic net penalized regression for associations between land use and GBI in Clusters 1 and 2. The remaining coefficients
were significant enough to be selected.

Land use (Buffer) unit: % Standardized elastic net coefficient

Cluster 1 Cluster 2

Minimally adjusteda Further adjustedb Minimally adjusteda Further adjustedb

High-density residential (100m) 0.089 0.056

Low-density residential (100m) −0.011 −0.043

Commercial and industrial
(100m)

Infrastructures (100m)

Urban green (100m) 0.001

Agricultural residential (100m) 0.097 0.067

Natural (100m) −0.003

Water (100m)

High-density residential (300m) 0.002

Low-density residential (300m)

Commercial and industrial
(300m)

0.084 0.065

Infrastructures (300m) −0.031 −0.029

Urban green (300m) 0.081 0.058

Agricultural residential (300m)

Natural (300m) −0.014

Water (300m) 0.002

High-density residential (500m) 0.046 0.026

Low-density residential (500m) 0.035 0.036

Commercial and industrial
(500m)

Infrastructures (500m) −0.012 −0.005

Urban green (500m) 0.010

Agricultural residential (500m) −0.067 −0.019

Natural (500m)

Water (500m) 0.020 0.012

Model feature (10-fold CV
selection)

α= 1.00, λ= 0.01,
Out-of-sample
R2= 0.06,
CV prediction
error= 0.74

α= 0.10, λ= 0.05,
Out-of-sample
R2= 0.06,
CV prediction
error= 0.74

α= 1.00, λ= 0.04,
Out-of-sample
R2= 0.10,
CV prediction
error=0.70

α= 1.00, λ= 0.04,
Out-of-sample
R2= 0.09,
CV prediction
error= 0.70

aAdjusted for sex, zygosity, smoking, work status, secondary level school, parental education, and age when twins provided the GBI assessment in young
adulthood.
bAdjusted for sex, zygosity, smoking, work status, secondary level school, parental education, age when twins provided the GBI assessment in young
adulthood, as well as age structure, education level, unemployment, and income level.
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First, the clustering analysis revealed a specific pattern in
urbanization, and twins from Clusters 1 and 2 mostly lived in the
“suburbs” and “city or town centers”, respectively. The land use
exposures are less important to depressive symptoms among
people living in city or town centers. The possible mechanisms
may be through differential healthcare service access, social
needs, transportation connectedness, or neighborhood environ-
ment [17, 48, 49]. For example, living in the suburbs usually
requires longer house-to-job commuting distances, which has
been found to be associated with poorer mental health [48].
Longer job commutes impliy greater need for transportation
infrastructire, and, similar to our linear elastic net regression
model, the higher percentage of infrastructure land use was
related to fewer depressive symptoms in Cluster 1 (suburban).
Nevertheless, Pelgrims et al. detected no significant association,
after full adjustment, between green surrounding, street corridor
and canyon effects, and depressive disorder among participants
living in the highly urbanized Brussels, Belgium [50]. Furthermore,
the impact of the social environment on the relationship between
land use exposures and depressive symptoms is more pro-
nounced in suburban areas compared to city centers. In China, the
mediating role of neighborhood-level social capital was shown to
be evident in the connection between urbanization and
depressive symptoms [51]. Since this is a single-country study,
Finland, compared to other developed countries, has quieter and
greener urban spaces that need to be considered in the
interpretation. We did not intend to distinguish people with an
arbitrary binary classification, instead, we promote the hypothesis
that the relationship between land use and depressive symptoms
exists in the specific land use context.
More broadly, land use exposures, that signaled urbanization,

were either selected by the penalized model or were among the
top five in the XGBoost model, indicating them as good
candidates to explain depressive symptoms. Niu et al. developed
a framework for the coupling coordination relationship between
urbanization and land use transition in China and suggested a
convergence phenomenon between them [52]. Nevertheless,
previous evidence on the effect of urbanization on depression is
not consistent. A 2020 review found a protective effect of
urbanization on depression in three Chinese studies, while four
other countries’ studies had opposite findings due to different
geographic regions and income levels [53]. An increasing trend in
depression prevalence among young adults and those who lived

in rural areas with low population density was observed in a
longitudinal Germany nationwide survey [54]. However, Morozov
indicated that urbanization adversely affected mental health via
several factors including noise and visual aggressiveness of the
environment in Russia [55]. There may be conjunct or nonadditive
relationships within land use or broad urban living environments.
The environMENTAL Consortium has sketched the multiple
mechanisms between urban living environmental profiles with
more than a hundred variables and psychiatric symptoms [12]. A
typical example of complexity is the urban heat island effect, a
higher regional temperature in urban areas than in surrounding
rural areas. It is differentially influenced by many land use factors,
in which expansion of built-up area increased but water areas
reduced the regional temperature [56], and moreover, the urban
heat island increases the risk of depression [53]. Additionally, the
directions of two negatively correlated land use exposures’
influence were not always consistent across varying buffers, thus
a single exposure cannot be inferred as a risk or protective factor.
Buffers provide a consideration of contextual effect, which
incarnate the spatial scale for different pathways linking urban
environments to health [57]. Thus, for the implication of urban
planning and improvement, we advocate that policymakers
recognize the intricate nature of our urban environment and
adopt a perspective that encompasses it as a holistic integration,
instead of a limited set of indices or indicators.
Including multiple land use exposures in a single analytic platform

allows us to disentangle the individual effects and assess the
complex relationships. To some extent, machine learning models
allow us to adjust or consider the mutual effect between different
land use exposures instead of repeated single regression models. The
linear elastic net penalized regression models selected a subset of
the most important land use exposures and reduced the risk of
correlating and overfitting, with better performance [38]. Because we
aim to reveal relationships instead of prediction, we did not refill the
land use exposures to the normal regression model and the
interpretation of effect size was weakened. Lenters et al. have applied
this approach to prenatal chemical exposures to solve the
interconnected effects of mixtures [37]. We also observed the
nonlinear relationship via the interpretable SHAP visualization from
XGBoost, but, like Ohanyan and colleagues’ studies, we did not
straightforwardly assess the interaction due to modest effect sizes
and other factors [21, 58]. Previous applications of this machine
learning method improved the prediction and forecast of air quality

Fig. 2 Shapley (SHAP) dependence plots of the top five most influential exposures in XGBoost models. The dependence plot shows the
relationship between the SHAP value and land use exposures in four models. Cluster 1 with minimal adjustment (A), Cluster 1 with further
adjustment (B), Cluster 2 with minimal adjustment (C), Cluster 2 with further adjustment (D). Demographic covariates and social indicators
were included in the models but suppressed in plots to highlight land use exposures.
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in China [41, 59]. Ma et al. also compared the prediction accuracy
between XGBoost and Lasso penalized regression models [59], while,
in our study, we wished to observe the intricate effects instead of
comparing accuracy, so we used RMSE, not AUC, to evaluate model
performance. Another Chinese study also explored the nonlinear
effect between the built and social environments and bus use
among older adults [42]. In advancing the conventional regression
model with limited exposures, the utility of multiple machine
learning algorithms provides a preliminary sketch of the labyrinthine
relationship between urban land use and depression symptoms.
Clustering analysis focused on multiple land use exposures and

facilitates the segmentation of residents for tailored epidemiolo-
gical assessment of the effect of land use on depressive symptoms
and customizes further improvement and intervention. The
differential pattern of urban land use environment was very
obvious in our findings. Methodologically, clustering analysis has
gained increasing attention in the field of exposure science.
Tognola and colleagues clustered children in France by exposure
to extremely low-frequency magnetic fields [60], and another
study developed a novel workflow in clustering with multiple
features including specific and general external exposomes and
identified sub-populations in type-2 diabetes patients [61].
There are some limitations in our studies. First, the information on

depression symptoms was obtained before 2012, so the potential
causality and direction are unable to be confirmed due to
temporality. Additionally, temporality also leads to the question of
the length and stability of exposures, so a lifecourse study is needed.
Second, compared to previous similar studies, the sample size is
relatively small. Although the two machine learning methods are
able to shrink the overfitting due to the small sample size, we still
need to be cautious about the findings. Third, we did not “fully”
leverage the twin structure to quantify the potential genetic
influence, although concordance and discordance in clusters
differed between monozygotic and dizygotic twins. Instead, we
used a mixed model to further explore the within-pair effect to
properly control the underlying genetic effect. Incorporation of a
twin design could guide the investigation of underlying genetic
influence in the high-dimensional environmental study in the future.
Fourth, there are potential confounding effects stemming from
other physical exposures such as air pollution and noise. Although
the land use exposures already carry some information about these

exposures [62], our forthcoming endeavors will employ advanced
techniques and models to measure these. Finally, the interpretability
of the machine learning model is a significant challenge that
required more endeavor in the field of data science. We found the
nonlinearity pattern, but it is difficult to elaborate on. This study is a
pilot study for exploration, and further follow-up studies are
welcome to strengthen the evidence.

CONCLUSION
This study is the first, to our knowledge, to investigate the complex
relationship between multiple urban land use exposures and
depressive symptoms in young adulthood. The pluralistic multi-
model inferences selected or prioritized the more important urban
land use exposures to depressive symptoms and revealed linear and
nonlinear relationships, which advances the conventional assess-
ment with a single index. Clustering analysis showed a notable
heterogeneous pattern in these relationships between participants
with different land use environments, implying the effects are under
a specific context. Due to sample size, model characteristics, and
temporality, our finding interpretation is cautious at present, and
more efforts are warranted to corroborate.
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