RTI $(h)(s)^{*}$ Health Solutions

^{n solutions} The Missing Data Problem: Using Propensity Scores to Estimate Non-Randomised Treatment Effects With Missing Covariate Data

Lawrence Rasouliyan¹, Estel Plana¹, David Martínez¹, Jaume Aguado¹, Ryan Ziemiecki²

¹RTI Health Solutions, Barcelona, Spain; ²RTI Health Solutions, Research Triangle Park, North Carolina, United States

BACKGROUND

- In non-randomised settings, patients who receive different treatments may also differ in their underlying characteristics. Failure to adjust for such potential confounders could yield a biased interpretation of the treatment effect.
- The propensity score (PS), defined as the probability of receiving a particular treatment given the patient's underlying characteristics, summarises measured confounders into a single variable.¹
- Although PS methods are used ubiquitously in non-randomised research, the literature is scarce regarding the impact of missing covariate data on the treatment effect calculation.²

OBJECTIVE

 To evaluate the performance of various PS-based methods in the presence of missing covariate data on treatment effect estimation in a simulated patient-level data set.

METHODS

Simulated Data

- Patient-level data were simulated based on a published observational cohort study of overactive bladder disease.³
- Two non-randomised treatment cohorts (Treatments A and B), totalling 96,000 patients, were followed over the course of 9 years (2004 to 2012) until censoring or the occurrence of cardiovascular (CV) mortality.
- Follow-up times were simulated using the Weibull distribution, and CV mortality was simulated as a Poisson event with a log-time offset.
- Baseline covariates included demographic, clinical, and lifestyle variables.
- By design, a greater risk of CV mortality was associated with entering the study in earlier calendar years, smoking status, and history of CV conditions.
- Smoking status and CV history covariates were then set to missing at random (MAR) in 5%, 10%, and 20% of patients under the following assumptions:
- From 2004 to 2006, these variables were optional data fields at all sites.
- From 2007 to 2008, these variables were mandatory fields at some sites but optional at others.

RESULTS

- Patients who initiated Treatment B were more likely to be male, enter the study in earlier calendar years, be current smokers, and have histories of acute myocardial infarction and heart failure (Figure 2).
- By design, the crude and true incidence rate ratio (IRR) values were 3.00 and 1.80, respectively (Table 1).
- Results of the analytic methods in the estimation of the treatment effect under the different MAR scenarios are presented in Figure 3:
 - The CC and MI methods performed similarly, with almost identical relative biases in the 5% and 10% MAR scenarios. MI performed slightly better under the 20% MAR scenario.
 - The SCMV method produced IRR point estimates that were more shifted away from the null than estimates produced by the other methods. SCMV was the poorest-performing method across all MAR scenarios as determined by having the largest relative biases.
 - The IRR point estimates derived from the PSCC + MIMC method were the smallest in value and closest to the true IRR value of 1.80.

Table 1. CV Mortality and Incidence Estimates in TreatmentCohorts

	Treatment A N = 49,000	Treatment B N = 47,000
Number of CV deaths	100	293
Person-years	42,849	41,823
IR per 1,000 person-years (95% CL)	2.33 (1.90, 2.84)	7.01 (6.23, 7.86)
Crude IRR (95% CL)	Ref	3.00 (2.38, 3.81)
True IRR (by design)	Ref	1.80

CL = confidence limit; IR = incidence rate.

Note: 95% CLs for the IR and IRR were derived using methods described by Dobson et al.⁴ and Sahai and Khurshid⁵, respectively.

AMI = acute myocardial infarction; CHD = coronary heart disease; HF = heart failure; PAD = peripheral artery disease; TIA = transient ischemic attack. *Percentages presented for variables that participated in the MAR scenarios were derived from the non-missing data; however, these values were equivalent across all MAR scenarios.

Figure 3. IRR Estimates From Different Analytic Methods and Levels of Missing Data

From 2009 to 2012, these fields were mandatory data fields at all sites.

Statistical Methods

- Logistic regression was employed to compute patient-level PS values where receipt of Treatment B was modelled as a function of all covariates of interest using the non-missing data.
- PS trimming as illustrated in Figure 1 was performed to ensure comparability of treatment cohorts.

Figure 1. Schematic of PS Trimming Process

- The treatment effect was estimated in the post-trimmed population by performing a Poisson regression with a log-time offset where CV mortality was modelled as a function of the treatment cohort and PS decile category.
- This process was repeated for each MAR scenario using the following methods to estimate the treatment effect in the presence of missing data:
 - Complete case (CC): Generating PS values that included only patients with fully complete covariate data
 - Separate category for missing values (SCMV): Creating a separate category for covariates with missing values for inclusion in the PS model
 - Multiple imputation (MI): Employing MI using all available information in the data set to impute missing covariate values for inclusion in the PS model
 - PS complete covariate with MI for missing covariates
 (PSCC + MIMC): Generating the PS model using only covariates with
 complete data, then adjusting for remaining covariates in conjunction with
 MI in direct modelling of the outcome as a function of treatment, PS, and
 the multiply imputed covariates
- Relative bias in each coefficient estimate was calculated as the absolute bias (difference between the estimated and true values) divided by the true value.

IRR = incidence rate ratio; CL = confidence limits

CONCLUSIONS

- In our simulation, implementing SCMV introduced a notable amount of additional bias compared with ignoring the missing data altogether in the PS analysis.
- The MI method did not yield any notable benefits, especially in scenarios of smaller amounts of missing data.
- PSCC + MIMC resulted in the least amount of bias and provided a notable benefit, especially with larger amounts of missing data.

DISCUSSION

- Relative bias was improved with increasing missingness, which may be attributable to the relationships between treatment, outcome, and covariates participating in the mechanism of missingness in this particular simulation.
- MI is often considered a default method of handling missing covariate data in PS analyses; however, our simulation results dispute its default status.
- The data in this simulation were MAR by design, but in real-world comparative effectiveness research, the mechanism of data missingness is rarely known.
- These results were based on a single simulation of a specific scenario. Repeated simulations and other simulations that vary several parameters are needed to draw more generalised conclusions.

REFERENCES

- Austin PC. An Introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate Behav Res. 2011 May;46(3):399-424.
- Qu Y, Lipkovich I. Propensity score estimation with missing values using a multiple imputation missingness pattern (MIMP) approach. Stat Med. 2009 Apr 30;28(9):1402-14.
- Arana A, Margulis AV, McQuay LJ, Ziemiecki R, Bartsch JL, Rothman KJ, et al. Variation in cardiovascular risk related to individual antimuscarinic drugs used to treat overactive bladder: A UK cohort study. Pharmacotherapy. 2018 Jun;38(6):628-37.
- 4. Dobson AJ, Kuulasmaa K, Eberle E, Scherer J. Confidence intervals for weighted sums of Poisson parameters. Stat Med. 1991;10:457-62.
- 5. Sahai H, Khurshid A. Statistics in epidemiology: methods, techniques, and applications. Boca Raton, Florida: CRC Press LLC; 1996.

CONTACT INFORMATION

Lawrence Rasouliyan, MPH Director, Biostatistics

RTI Health Solutions Barcelona, Spain E-mail: Irasouliyan@rti.org