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Recent work has demonstrated that propensity score matching may lead to increased covariate imbalance,
even with the corresponding decrease in propensity score distance between matched units. The extent to which
this paradoxical phenomenon might harm causal inference in real epidemiologic studies has not been explored.
We evaluated the effect of this phenomenon using insurance claims data from the Pharmaceutical Assistance Con-
tract for the Elderly (1999–2002) and Medicaid Analytic eXtract (2000–2007) databases in the United States. For
each data set, we created several 1:1 propensity-score–matched data sets by manipulating the size of the covari-
ate set used to generate propensity scores, the index exposure prevalence in the prematched data set, and the
matching algorithm. We matched all index units, then progressively pruned matched sets in order of decreasing
propensity score distance, calculating covariate imbalance after each pruning. Although covariate imbalance
sometimes increased after progressive pruning of matched sets, the application of commonly used propensity
score calipers for defining an acceptable match stopped pruning near the lowest region of the imbalance trend and
resulted in an improvement over the imbalance in the prematched data set. Thus, propensity score matching does
not appear to induce increased covariate imbalance when standard propensity score calipers are applied in these
types of pharmacoepidemiologic studies.

covariate balance; Mahalanobis distancematching; propensity score; propensity score matching

Abbreviations: COX-2, cyclooxygenase-2; DGM, digit-based greedy matching; MAX, Medicaid Analytic eXtract; MDM, Mahalanobis
distance matching; NNM, nearest-neighbor matching; NSAID, nonsteroidal antiiinflammatory drug; PACE, Pharmaceutical Assistance
Contract for theElderly; PSM, propensity scorematching.

Propensity score matching (PSM) is a popular method to con-
trol for differences in propensity score distributions in observa-
tional research (1–3). Other methods, notably stratification by
propensity score, may be preferable with respect to overall effi-
ciency, but PSM remains popular, perhaps owing to its reduction
of the matching process to one dimension (2, 4–6). With PSM,
index units are matched to reference units with similar propensity
score values, even though their underlying covariate profiles
might be dissimilar. Even with this underlying dissimilarity, the
distributions of observed covariates should be similar, on average,
between index and reference units, conditional on the propensity
score (5, 7). From a practical perspective, PSM is easily under-
stood among researchers and is easily implementedwith available
algorithms (8).

King and Nielsen (9) recently argued that PSM should be
avoided because of the potential for the “PSM paradox” to
degrade causal inference. The paradox, in brief, is that, for
data sets that already are well-balanced on measured covari-
ates, pruning of matched sets with the largest propensity
score distances between the index and reference units may
lead to increased imbalance in the underlying covariate dis-
tributions between exposure groups and, thus, to increased
bias in the effect estimate.

Because King and Nielsen demonstrated the paradox in data
sets with fewer covariates and with better initial covariate balance
than what typically is encountered in pharmacoepidemiology, the
practical effect of the paradox in pharmacoepidemiologic analyses
is not clear.
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Here, we have presented a description of the paradox and the
results of an analysis of the impact of the paradox in pharmacoepi-
demiologic applications using insurance claims data. We used
methods similar to those used by King and Nielsen in order to
track levels of imbalance produced by progressive pruning of
matched pairs from data sets in which, initially, all index units are
matched. We varied a number of key parameters in the matching
process, generating multiple matched data sets. Our intent was to
evaluate the practical implications of the theoretical findings of
King andNielsen.

THE PSMPARADOX

The standard approach to 1:1 PSM for a dichotomous exposure
is: 1) generate propensity scores corresponding to the estimated
probability of receiving the index exposure, conditional on ob-
served covariates, for every unit in a data set (commonly via logis-
tic regression); 2) match a reference unit to each index unit via
some algorithm (e.g., nearest-neighbor matching (NNM)); 3)
prune from the resulting data set thematched pairs with the largest
propensity score distances in order to eliminate poorly matched
units and to ensure balanced propensity score distributions (usually
via application of a caliper as part of step 2); 4) compare (usually
at the univariate level) pre- and postmatched covariate distributions
to assess the improvement in covariate balance due to PSM; 5)
estimate the effect parameter of interest in the matched data set
(10). The key benefit of matching on the propensity score is the
dimension reduction that allows for efficient matching on a scalar
summary of a potentially large vector of covariates.

LetX be the vector of observed covariates that inform the pro-
pensity scoremodel. PSMguarantees balance among thematched
sets on the conditional probability of exposure, ( )XPr Exposure ,
but it guarantees balance onX only asymptotically (11, 12). With
asymptotic balance, any pruning of matched sets from the result-
ing data set is expected to be random with respect to underlying
covariate balance. The reduction in study size resulting from ran-
dom pruning could, by chance, increase the underlyingX distance
between matched units. Thus, although the intent of pruning pro-
pensity-score–matched sets is to increase covariate balance, this
process could have the opposite effect. By extension, with better
covariate balance prior to any matching or pruning, it becomes
more likely that balance will begin to deteriorate after only a few
prunings. If the same procedure of pruning the worst-matched
units is applied in the context of matching on the actual compo-
nents ofX, rather than on the scalar propensity score, an increase
in imbalance is not expected because distances between the origi-
nal covariate values inform the matching and pruning decisions
(13–17).

We present a simple example of this phenomenon using
only 2 covariates in Table 1. In this population of 12, 4 are
exposed to the index exposure and 8 to the reference exposure.
The distributions of sex and race in this population are per-
fectly balanced between the 2 exposure groups. The propensity
score for every unit is ( ) =Pr Index Exposure Sex, Race 1/3.
If 1:1 PSM without replacement is performed, there should be
no algorithmic preference to match any reference unit to any
index unit, because all 12 units have the same propensity score
value. There are 70 possible selections of 4 reference units
from the pool of 8 reference units to build the matched cohort

consisting of 8 total units. Only 16 of those selections will retain
perfect covariate balance in the sex-race distribution. Thus, we
expect that 77% of the time, covariate balance will be worse
after the initial pruning of units via PSM, compared with the bal-
ance in the prematched data set. This phenomenon occurs even
though the distribution of propensity scores will be perfectly bal-
anced in any matched data set. If either of these 2 covariates is
related to outcome, we expect the covariate imbalance to corre-
spond to bias in the treatment effect estimate.

Unlike our example data set, the typical pharmacoepidemiolo-
gic claims data set, which comprises a large number of patients
and a large number of potential confounders of an association
between a drug and health outcome (e.g., corresponding to con-
comitant medications and comorbidities), is not well-balanced on
X beforematching (18–20). Thus, we expected to observe a nota-
ble improvement in balance after PSM long before pruning could
worsen balance.

METHODS

Description of data sets

Two retrospective cohortswere used in these analyses. Thefirst
was a cohort of 49,919 low-income Medicare beneficiaries, at
least 65 years of age, who were enrolled in the Pharmaceutical
Assistance Contract for the Elderly (PACE) database in New
Jersey over the years 1999–2002 and who initiated nonselec-
tive nonsteroidal antiiinflammatory drugs (NSAIDs) or selective
cyclooxygenase-2 (COX-2) inhibitors (21, 22). The PACE cohort
was generated to perform an analysis of the effect of selective
COX-2 inhibitors, compared with nonselective NSAIDs, on
the risk of gastrointestinal complications. Approximately 60%
of patients represented in this cohort were selective COX-2
inhibitor initiators. Approximately 2,000 cases of gastrointes-
tinal complication were observed in this cohort.

The second cohort comprised information on 886,996 com-
pleted pregnancies andwas generated from theMedicaidAnalytic
eXtract (MAX) over the years 2000–2007 (6, 23, 24). The MAX
cohort was used to perform an analysis of the effect of statin use
during the first trimester of pregnancy, compared with no use
during the first trimester of pregnancy, on the risk of congenital
malformation in the infant. Statin use was defined as the existence
of at least 1 claim for a dispensed statin within the first trimester.
Approximately 0.13% of women represented in this cohort filled
a statin prescription during the first trimester. Approximately
30,000 congenital malformationswere observed in this cohort.

Creation of matched data sets

We created multiple 1:1-matched data sets using propensity
scores generated via logistic regression. In order to relax distribu-
tional assumptions for the propensity score models, all continuous
variables were categorized. The propensity score models based on
PACE predicted the probability of exposure to nonselective
NSAIDs (there were fewer nonselective NSAID initiators than
selective COX-2 inhibitor initiators), while the propensity score
models based on MAX predicted the probability of exposure to
statins. Each matched data set represented a different manip-
ulation of: 1) the richness of the covariate set informing the
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propensity score model, 2) the prevalence of index exposure in
the prematched data set, and 3) thematching algorithm.

Covariate set richness. To assess whether increasing the
number of covariates in the propensity score model decreases the
number of prunings required for covariate imbalance to increase,
we used 3 PACE-based covariate sets. The first covariate set,
“small,” comprised 19 covariates that were selected based on clin-
ical importance. The second and third covariate sets (“standard”
and “large,” respectively) comprised additional covariates (repre-
senting concomitant medications, comorbidities, and other medi-
cal encounters) selected by a high-dimensional propensity score
(HDPS) algorithm (25), in addition to the 19 predetermined co-
variates. The 50 covariates with the highest bias-based HDPS
ranks were included in the “standard” covariate set, and the 100
covariates with the highest bias-based HDPS ranks were included
in the “large” covariate set. All models generated from MAX
were based on one covariate set comprising 20 categorical co-
variates, which were selected based on clinical importance.

Prevalence of index exposure in the prematched data set.
To determine how the size of the fullymatched data set affects co-
variate balance during matched-set pruning, the index exposure
prevalence values of PACE and MAX were varied, via simple
random sampling with replacement, but the original data set sizes
were retained.Matched data setswere generated fromPACE, sep-
arately for each of the 3 covariate set scenarios, using the original
index exposure prevalence, 50% of the original index exposure
prevalence, and 20% of the original index exposure prevalence.
Matched data sets were generated from MAX using the original
index exposure prevalence, 400% of the original index exposure
prevalence, and 700%of the original index exposure prevalence.

Matching algorithm. Because the matching quality may
depend on the matching algorithm, we used two 1:1 PSM algo-
rithms that have been used in previous pharmacoepidemiologic
analyses: a variation of NNM and a variation of Parson’s digit-
based greedy matching (DGM) (8). While the former algorithm
attempts tominimize the overall propensity score distance among
matched sets, the latter algorithm matches units on decreasing
levels of precision, up to the fifth digit of the propensity score,
without consideration of overall distance.

Because King et al. (9, 26) referred to Mahalanobis distance
matching (MDM) as a potentially better option than PSM for

maintaining covariate balance after matching, we also imple-
mentedMDM. Like the propensity score, theMahalanobis dis-
tance is a scalar summary of the original covariate space.
However, unlike the propensity score, it is a direct representa-
tion of distance between units in the actual covariate space, and
has the following form:

[( − )′ ( − )]∑−X X X X ,i j i j
1

where i indexes the exposed unit, j indexes the unexposed unit,X
is the vector of covariates for a given unit, and ∑ is the sample

covariance matrix of the original data (11).We selected a nearest-
neighbor matching algorithm to implement MDM given the pop-
ularity of this algorithm forMDM(27, 28).

We constructed 12 unique data sets (9 PACE data sets and
3 MAX data sets) and 36 unique matching scenarios for our
analysis. Our manipulation strategy is summarized in Web
Figure 1 (available at https://academic.oup.com/aje).

Pruning and assessment of imbalance

For each fully matched data set, matched pairs were ranked in
order of decreasing absolute propensity score distance orMahala-
nobis distance, and the matched pair with the largest distance was
pruned from the data set. Covariate balance was assessed for the
remaining data set, then the matched pair with the largest distance
in the remaining data set was pruned, and covariate balance was
assessed again. This process was repeated until only a single
matched pair was left in the data set.

We used 2 metrics to summarize covariate imbalance: the
Mahalanobis balance and the C statistic. The Mahalanobis
balance is a type of Mahalanobis distance that represents the
extent of covariate balance in the actual covariate space, and
has the following form:

[( − )′ ( − )]∑−X X X X ,T T T T1 0
1

1 0

whereXTK is the vector of covariate means in exposure group k,

and∑ is the sample covariancematrix of the original data (29, 30).

Table 1. Simple Example of the Propensity ScoreMatching Paradox

Sex and Racea Index Exposure (n= 4) Reference Exposure (n= 8) Total (n= 12) Stratum PS

Male

White 1 2 3 0.3

Not white 1 2 3 0.3

Female

White 1 2 3 0.3

Not white 1 2 3 0.3

Abbreviation: PS, propensity score.
a The example population represented in this table contains index and reference exposure groups that are perfectly

balanced on sex and race. The propensity score values for all 12 units are equal. One-to-one propensity score match-
ing without replacement would be expected to increase the underlying covariate imbalance in the matched data set,
compared with the prematched data set.
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Higher Mahalanobis balance values indicate worse covariate
balance.We used theC statistic to determine changes in the dis-
criminatory power of the logistic model predicting index expo-
sure in the matched data set (31, 32). Balance on the covariates
in the matched data set should lead to poor ability of the corre-
sponding logistic model to determine which units are exposed

(i.e.,C statistics near 0.5) (29). Thus, higherC statistic values
(greater than 0.5) indicate worse covariate balance.

The points in the pruning process at which 3 absolute
propensity-score distance calipers were achieved were marked
both for the NNM andDGM scenarios.We selected our calipers
from the common range (0.01–0.05) (33).We focused on a 0.05

Table 2. Example Distributions of the Non–High-Dimensional Propensity Score Covariates in the Prematched Pharmaceutical Assistance
Contract for the Elderly Data Set (United States, 1999–2002), “Standard”Covariate Set, Original Index Exposure Prevalence Data Set, and in the 3
Corresponding Fully Matched Data Sets

Covariate

Prematched (n = 49,653) Full, NNM Full, DGM Full, MDM

Nonselective NSAIDs
(n = 17,611)a

Selective COX-2
Inhibitors (n = 32,042)

Selective COX-2
Inhibitors (n = 17,611)

Selective COX-2
Inhibitors (n = 17,611)

Selective COX-2
Inhibitors (n = 17,611)

Mean (SD) % Mean (SD) % Mean (SD) % Mean (SD) % Mean (SD) %

Age 77.79 (7.30) 79.76 (7.24) 78.15 (7.24) 78.16 (7.23) 78.95 (7.06)

No. of generics
prescribed

7.43 (5.02) 8.41 (5.25) 7.56 (5.02) 7.60 (5.03) 6.75 (4.17)

No. of medical visits 7.74 (6.61) 8.60 (6.67) 7.86 (6.53) 7.90 (6.59) 6.96 (5.32)

Charlson Comorbidity
Index score

1.85 (1.97) 2.05 (2.01) 1.85 (1.95) 1.87 (1.96) 1.47 (1.58)

Male sex 18.84 14.09 17.47 17.50 13.43

Race

White 89.76 95.45 92.94 92.86 94.61

Black 8.97 3.54 5.91 5.96 4.15

Other 1.27 1.02 1.15 1.19 1.24

Comorbidities

Bleeding 1.11 1.72 1.15 1.25 1.08

CHF 24.58 30.36 24.76 25.17 18.80

Coronary disease 14.78 16.43 14.89 14.87 9.60

Hypertension 70.20 72.82 70.18 70.29 70.82

Rheumatoid
arthritis

2.70 5.00 3.02 2.84 2.54

Osteoarthritis 33.49 48.53 35.16 35.01 41.23

Ulcer 2.42 3.71 2.58 2.58 2.14

Hospitalization in
prior year

26.07 30.60 26.47 26.90 17.86

Nursing home
resident

5.66 8.34 6.18 6.23 3.64

Other medications

Corticosteroid 7.80 8.74 8.08 8.17 5.48

Other
gastrointestinal
medication

20.44 27.42 21.70 21.75 20.28

Warfarin 6.55 13.27 7.00 7.02 5.95

Year of exposure
initiation

1999 48.79 41.68 47.09 47.11 43.21

2000 23.91 29.94 24.90 24.79 29.10

2001 20.00 21.28 20.49 20.73 21.08

2002 7.30 7.09 7.52 7.38 6.62

Abbreviations: CHF, congestive heart failure; COX-2, cyclooxygenase-2; DGM, digit-based greedy matching; MDM, Mahalanobis distance
matching; NNM, nearest-neighbor matching; NSAID, nonsteroidal antiiinflammatory drug; SD, standard deviation.

a The nonselective NSAIDs covariate distribution is shown only once, because this distribution was the same in each data set.
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caliper and then applied the more conservative calipers of 0.025
and 0.01 in order to determinewhether the further loss ofmatched
sets would correspond to increased covariate imbalance. Each cal-
iper criterion was satisfied when the maximum propensity score
distance between 2 units of a matched pair in a pruned data set
was less than the caliper value.

Tracking changes in the effect estimate

We calculated and plotted a point estimate of effect after each
pruning. For PACE, we calculated the relative risk estimate corre-
sponding to the effect of nonselective NSAIDs, compared with
COX-2 inhibitors, on the risk of gastrointestinal complications.

Table 3. Example Distributions (Percentage) of All Covariates in the PrematchedMedicaid Analytic eXtract Data
Set (United States, 2000–2007), Original Index Exposure Prevalence Data Set, and in the 3 Corresponding Fully
Matched Data Sets

Covariate

Prematched (n = 886,996) Full, NNM Full, DGM Full, MDM

Statins
(n = 1,152)a

No Statins
(n = 885,844)

No Statins
(n = 1,152)

No Statins
(n = 1,152)

No Statins
(n = 1,152)

Age category, years

≤19 5.56 29.43 5.21 4.25 5.21

20–24 14.06 35.6 12.76 14.41 14.24

25–29 21.09 20.41 21.96 22.31 22.74

30–34 28.13 9.48 28.91 28.65 27.34

35–39 22.22 4.17 21.96 21.61 21.53

≥40 8.94 0.91 9.20 8.77 8.94

Race

Asian/other Pacific Islander 6.51 3.42 6.42 5.90 5.38

Black/African American 25.69 34.09 22.92 24.31 27.95

Hispanic/Latino 17.10 15.08 21.09 17.88 17.88

Other 5.73 4.74 6.08 7.47 4.86

Unknown 2.95 2.01 3.39 3.21 2.78

White 42.01 40.67 40.10 41.23 41.15

US region

Midwest 23.18 32.02 22.48 20.92 24.39

Northeast 21.27 14.97 20.57 22.83 18.75

South 26.04 26.07 24.13 26.13 26.48

West 29.51 26.94 32.81 30.12 30.38

No. of nonantihypertensive generics used

0 8.33 46.45 6.25 7.29 10.76

1–3 27.00 36.64 30.30 28.39 28.21

>3 64.67 16.91 63.45 64.32 61.02

No. of physician visits during the preindex
period

0 27.08 52.07 25.78 25.52 25.87

1–3 49.91 39.52 51.82 51.48 53.39

>3 23.00 8.41 22.40 23.00 20.75

Year of delivery

2000 0.00 0.14 0.00 0.00 0.00

2001 4.17 9.65 4.51 4.25 3.39

2002 5.56 11.04 6.34 4.77 6.34

2003 10.42 14.59 10.33 9.72 10.33

2004 19.10 17.61 18.23 18.92 17.36

2005 20.14 16.88 20.23 20.23 20.31

2006 23.78 17.49 21.18 24.05 24.74

2007 16.84 12.60 19.18 18.06 17.53

Table continues
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For MAX, we calculated the relative risk estimate corresponding
to the effect of statin use during the first trimester of pregnancy,
compared with no use during the first trimester of pregnancy, on
the risk of congenital malformation. Our goal in generating these
graphswas to depict the pattern describing how the paradoxmight
lead to bias in the effect estimate.

RESULTS

We display example covariate distributions for the prematched
data set and for the fully matched data sets for PACE in Table 2
and for MAX in Table 3. These tables indicate that covariate bal-
ance in the prematched data set was far worse for MAX than for
PACE. In both data sets, covariate balance improved after the cre-
ation of the fully matched data set. For PACE, improvement was
more marked for NNM and DGM than for MDM (Table 2). For
MAX, the opposite was true (Table 3). We also analyzed stan-
dardized differences and drew the same conclusions (Web Fig-
ures 2 and 3) (34).

We display all Mahalanobis balance metric trend graphs
for PACE and MAX in Figures 1 and 2, respectively. The C
statistic metric trend graphs were similar and are displayed in
Web Figures 4 and 5 for PACE andMAX, respectively. We also
present zoomed-in versions of Figures 1 and 2 in Web Figures 6
and 7, respectively.

In each panel of Figures 1 and 2, the fully matched data sets
produced by NNM and by DGM had much better covariate bal-
ance than the corresponding prematched data set, although this
was not always the case forMDM—in one case, balance actually

was worse for MDM in the fully matched data set (Figure 1G).
Moreover, the points at which the caliper criteria were met were
always near the lowest regions of theNNMandDGM trend lines.
These results indicate that if a typical caliper on the absolute pro-
pensity score scale in the range (0.01–0.05) had been required
after NNM or DGM, before performing inference on these data,
the covariate balance in the corresponding pruned data set would
always have been near optimal (at least, as measured by the
Mahalanobis balance). However, even though NNM and
DGM always greatly improved covariate balance with respect
to the prematched data sets after only a few prunings, covar-
iate imbalance did eventually increase after further pruning
in certain cases.

Covariate set richness

For the PACENNM- andDGM-matched data sets, for a given
index exposure prevalence, fewer prunings were required for co-
variate imbalance to increase as the number of covariates used to
construct the corresponding propensity score model increased
(Figure 1). This result is demonstrated by the fact that the imbal-
ance trends increased more quickly during the pruning process as
the number of covariates increased, by the fact that theMahalano-
bis balance value of the fully matched data set increased as the
number of covariates increased, or both. A similar trend occurred
for the PACEMDM-matched data sets. As the number of covari-
ates used to perform MDM increased, the Mahalanobis balance
value of the fully matched data set increased. Finally, increasing
the number of covariates used to construct the propensity score

Table 3. Continued

Covariate

Prematched (n = 886,996) Full, NNM Full, DGM Full, MDM

Statins
(n = 1,152)a

No Statins
(n = 885,844)

No Statins
(n = 1,152)

No Statins
(n = 1,152)

No Statins
(n = 1,152)

Comorbidities

Hypertension 40.63 5.00 39.76 40.97 40.02

Diabetes 45.14 3.06 40.71 41.75 45.14

Renal disease 4.17 0.46 3.91 3.82 4.17

Obesity 23.35 5.31 23.87 25.26 23.35

Tobacco use 11.02 7.77 10.16 11.11 8.85

Alcohol abuse 3.99 2.61 4.60 4.69 3.13

Illicit drug use 6.42 5.33 6.60 6.68 5.38

Dyslipidemia 67.10 3.14 71.09 71.53 66.58

Multiple gestation 6.60 3.55 6.16 7.03 5.64

Multipara 88.80 75.69 88.02 88.54 92.01

Other medications

Insulin 30.47 1.24 26.30 25.95 30.47

Antidiabetic medication 38.80 1.27 33.94 34.29 38.80

Hypertension medication 53.73 6.65 52.52 50.95 52.78

Potentially teratogenic medication 31.68 3.63 29.08 28.47 30.30

Abbreviations: DGM, digit-based greedy matching; MDM, Mahalanobis distance matching; NNM, nearest-
neighbor matching.

a The statins covariate distribution is shown only once, because this distribution was the same in each data set.
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model generally increased the number of prunings required to
achieve the caliper criteria (Web Figure 6).

Prevalence of index exposure in the prematched data set

No consistently strong trends in imbalance across index
exposure prevalence levels were noted, although the largest

index exposure prevalence scenarios for PACE and MAX
always required more prunings to minimize imbalance. This
relation was especially clear for PACE (Figure 1A, 1D, and
1G). Also, for a given covariate set size, lower index expo-
sure prevalence values always corresponded to fewer prun-
ings required to achieve the caliper criteria (Web Figures 6
and 7).
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Figure 1. Mahalanobis balance metric trends for the 9 data sets based on data from Pharmaceutical Assistance Contract for the Elderly, United
States, 1999–2002. A) “Small” covariate set, original index exposure prevalence (IEP); B) “small” covariate set, 50% of IEP; C) “small” covariate
set, 20% of IEP; D) “standard” covariate set, IEP; E) “standard” covariate set, 50% of IEP; F) “standard” covariate set, 20% of IEP; G) “large” covari-
ate set, IEP; H) “large” covariate set, 50% of IEP; I) “large” covariate set, 20% of IEP. The black dots indicate theMahalanobis balance values of the
prematched data sets. Red lines indicate propensity-score nearest-neighbor matching trends; green lines indicate propensity-score digit-based
greedy-matching trends; and blue lines indicate Mahalanobis-distance matching trends. The dotted and dashed vertical lines (for propensity-score
nearest-neighbor matching and propensity-score digit-based greedy matching, respectively) mark the 6 points at which the propensity score
matching trends first met the 0.05, 0.025, and 0.01 absolute propensity score distance caliper criteria (vertical line colors correspond to trend col-
ors). The caliper criteria were alwaysmet in the order 0.05, 0.025, and 0.01 during the pruning process.
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Matching algorithm

The differences between the performances of NNM and DGM
in reducing imbalance were not substantial in any scenario. For
MAX,MDMperformed better overall thanNNMandDGMwith
respect to maintaining low covariate imbalance (Figure 2).
However, for PACE, as the number of covariates used to build the
propensity score model increased, MDM performance became
increasingly worse, as evidenced by the elevated MDM trend
lines (Figure 1). Finally, all MDM imbalance trends were effec-
tively monotonic decreasing, whereas the paradox was visible in
some cases for theNNMandDGM trends.

Tracking changes in the effect estimate

The relative risk estimate trends for PACE and MAX are dis-
played in Figures 3 and 4, respectively. We found that, in general,
the NNM and DGM trends were similar, especially at the left-
most portion of each panel (i.e., in the caliper regions). For PACE,
in the larger covariate set scenarios, theMDM trends indicated rel-
ative risk estimates further from the null than did the NNM and
DGM trends, whereas in the “small” PACE scenarios and in all
MAX scenarios, all 3 algorithms produced similar relative risk es-
timates early in the pruning process. These findings corresponded
to the findings regarding imbalance. Finally, in most cases, there
was a clear difference between the prematched relative risk esti-
mate and the relative risk estimates early in the pruning process.
This difference also corresponded to the clear differences in
imbalance among the data sets (e.g., compare Figure 4A with
Figure 2A).

DISCUSSION

PSM greatly improved covariate balance compared with bal-
ance in the prematched data set. The points at which our caliper
criteria would have beenmet were always near the lowest points

on the imbalance trends, indicating that matched data sets con-
structed from these data by many would have corresponded to
excellent covariate balance. Although imbalance increased with
further pruning when the propensity scoremodel was based on a
higher number of covariates, this phenomenon occurred only
after pruning more matched sets than would have been required
to achieve our caliper criteria. Moreover, although MDM led to
near-monotonic decreasing imbalance trends, PSM achieved
better covariate balance with fewer prunings and much larger
matched data set sizes for the larger covariate set scenarios.

The fact that the paradox was clearer in the larger covariate set
scenarios was not surprising. When more covariates are used to
build the underlying propensity score model, there is a greater
probability that different individuals with similar propensity score
values will have more dissimilar underlying covariate profiles,
thus increasing the chance that balance will deteriorate after only
a few prunings (9). A similar logic applies to our finding that, in
general, more prunings were required to achieve the caliper crite-
ria when the underlying propensity score model was based on a
larger vector of covariates. Even so, matching on the propensity
score based on a larger vector of covariates always provided a
great improvement in covariate balance in the caliper-matched
data set compared with the prematched data set—more so than
MDM.

We found that manipulation of the index exposure prevalence
affected the balancing of propensity score distributions more than
the balancing of the underlying covariate distributions. For both
NNM and DGM, the fact that the caliper criteria were always
achieved with fewer prunings as the index exposure prevalence
decreased was not surprising when considered from the perspec-
tive of balancing propensity score distributions. Lower index ex-
posure prevalence equates to a higher probability of a single
index unit finding a good reference unit match on the propensity
score simply because, for a given study size, the pool of reference
units is relatively larger when the index exposure prevalence is
lower. However, it was difficult to perceive a clear effect on the
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underlying covariate balance, as evinced by the fact that the
imbalance trend shapes did not change much as the index expo-
sure prevalencewas altered.

For our analyses, the PSM algorithm was not an important
indicator of the appearance of the paradox, although previous

studies comparing NNM with DGM have suggested a prefer-
ence for NNMover DGMwith respect to bias (8).

Themonotonicity of theMDM trends alsowas not surprising
(26). The failure of MDM to achieve adequate covariate bal-
ance early in the pruning process with more covariates may be
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attributed to known issues with MDM (30, 35–37). It has been
suggested that higher dimensions diminish the efficiency of
MDM because, unlike the logit-based PSM, MDM attempts
to match units while regarding all interactions in the covari-
ate space as equally important. Thus, having more covariates
equates to having more complicated interactions to balance.
This phenomenonmay explain our finding that certain covariates
were balanced differently after MDM compared with NNM and
DGMand that the relative risk estimates were usually different
forMDM, comparedwithNNMandDGM,with larger covariate
sets (Web Figures 2 and 3; Figures 3 and 4). Thus, PSMmay be
the better option for the high-dimensional matching scenar-
ios that are common to pharmacoepidemiologic research.

During matching, only covariate distribution imbalance and
study size may be controlled directly, although the bias-variance
trade-off for effect estimation certainly may be affected by the
imbalance-study size tradeoff (26). Thus, it is difficult to make
strong statements regarding our effect estimate trends. Even so,
in general there were no large differences between the relative
risk estimates from NNM and DGM early in the pruning pro-
cess, whereasMDMproduced clearly different relative risk esti-
mates when based on larger covariate set sizes.

We conclude that in our claims data, PSM in its conventional
application would not have harmed covariate balance in the man-
ner predicted based on King and Nielsen’s work. Although our
findings conform to King and Nielsen’s description of the para-
dox, implementing either version of PSM in our data sets with
any standard absolute propensity-score distance caliper resulted in
very good balance and preservation of sample size. Conversely,
the utility of MDM depended on the prematched data set and
resulted in either excellent balance with few prunings or excel-
lent balance only after pruning a very large portion of thematched
data set.

Although we analyzed a limited set of conditions, we focused
on data and techniques that are common in pharmacoepidemiol-
ogy. Thus, our results bear important implications for applied

researchers. Specifically, our results indicate that the paradox
might not arise for situations in which the prematched data set
has high covariate imbalance and in which a reasonable abso-
lute propensity-score distance caliper is applied.We expect that
the paradox should be a practical concern only when the pre-
matched data set has very low covariate imbalance, such that
covariate balance worsens either after the full match or after
only a few prunings, as in our simple example, or in the unlikely
scenario in which pruning is allowed to continue well beyond
the point at which a reasonable absolute propensity-score dis-
tance caliper would stop the pruning process, as in our example
studies. We stress the importance of checking covariate bal-
ance after PSM in order to identify any increase in covariate
imbalance—at the very least, via a univariate comparison of the
pre- and postmatched covariate distributions. Finally, existing
algorithms may be used to explore imbalance trends in order
to identify disagreements between propensity score distribution
balance and covariate balance (38).
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