BACKGROUND/OBJECTIVES: Vaccination against SARS-CoV-2 remains a key measure to control COVID-19. Nuvaxovid, a recombinant Matrix-M-adjuvanted protein-based vaccine, showed similar efficacy to mRNA vaccines in clinical trials and real-world studies, with lower rates of reactogenicity.
METHODS: To support decision making on UK vaccine selection, a population-based compartmental dynamic transmission model with a cost-utility component was developed to evaluate the cost-effectiveness of Nuvaxovid compared with mRNA vaccines from a UK National Health Service perspective. The model was calibrated to official epidemiology statistics for mortality, incidence, and hospitalisation. Scenario and sensitivity analyses were conducted.
RESULTS: In the probabilistic base case, a Nuvaxovid-only strategy provided total incremental cost savings of GBP 1,338,323 and 1558 additional quality-adjusted life years (QALYs) compared with an mRNA-only vaccination strategy. Cost savings were driven by reduced cold chain-related operational costs and vaccine wastage, while QALY gains were driven by potential differences in vaccine tolerability. Probabilistic sensitivity analysis indicated an approximately 70% probability of cost-effectiveness with Nuvaxovid-only versus mRNA-only vaccination across most cost-effectiveness thresholds (up to GBP 300,000/QALY gained).
CONCLUSIONS: Nuvaxovid remained dominant over mRNA vaccines in scenario analyses assessing vaccine efficacy waning, Nuvaxovid market shares, and the vaccinated population.