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A B S T R A C T   

Aims: This study’s objective was to evaluate whether deep learning (DL) on retinal photographs from a diabetic 
retinopathy screening programme improve prediction of incident cardiovascular disease (CVD). 
Methods: DL models were trained to jointly predict future CVD risk and CVD risk factors and used to output a DL 
score. Poisson regression models including clinical risk factors with and without a DL score were fitted to study 
cohorts with 2,072 and 38,730 incident CVD events in type 1 (T1DM) and type 2 diabetes (T2DM) respectively. 
Results: DL scores were independently associated with incident CVD with adjusted standardised incidence rate 
ratios of 1.14 (P = 3 × 10− 04 95 % CI (1.06, 1.23)) and 1.16 (P = 4 × 10− 33 95 % CI (1.13, 1.18)) in T1DM and 
T2DM cohorts respectively. The differences in predictive performance between models with and without a DL 
score were statistically significant (differences in test log-likelihood 6.7 and 51.1 natural log units) but the in-
crements in C-statistics from 0.820 to 0.822 and from 0.709 to 0.711 for T1DM and T2DM respectively, were 
small. 
Conclusions: These results show that in people with diabetes, retinal photographs contain information on future 
CVD risk. However for this to contribute appreciably to clinical prediction of CVD further approaches, including 
exploitation of serial images, need to be evaluated.   

1. Introduction 

Cardiovascular disease (CVD) is one of the leading causes of death 
worldwide with type 1 and type 2 diabetes as known risk factors and 
thus many efforts have been made to improve CVD risk prediction [1]. 

Previous studies have shown that characteristics of the retinal 
vasculature observed by retinal fundus imaging contain valuable infor-
mation regarding cardiovascular health. For example, arteriolar and 
venular widths and tortuosity [2], venular occulsions [3], vascular 
caliber [4], and a combination of various retinal information [5] have 
shown strong association with the incidence of future cardiovascular 
events. Studies in people with diabetes included relatively small cohort 

sizes. 
It has been shown that a variety of traditional CVD risk factors such 

as age, sex, and smoking status can be predicted using deep learning 
(DL) on retinal fundus images [6]. Recently, efforts have been made to 
assess whether DL predictors of intermediate disease risk markers such 
as carotid artery atherosclerosis [7], the presence of coronary artery 
calcium (CAC) [8–10], and of retinal-vessel features [11,12], learned 
from retinal photographs predict CVD events. However in these studies 
in the general population, there was little increment in prediction of 
CVD risk by use of DL models of these intermediate risk markers or 
factors. 

There is considerable evidence that retinopathy and CVD share 
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common risk factors in diabetes so that predictive information on CVD 
might be expected from retinal images. In many countries including 
Scotland screening programmes exist so that retinal photographs may 
provide a routinely available source of information. Therefore the aim of 
this prospective cohort study was to examine whether DL predictors 
(DLP) applied to retinal images could improve the prediction of CVD risk 
compared with baseline models using clinical covariates, in people with 
type 1 diabetes (T1DM) and type 2 diabetes (T2DM). 

2. Material and methods 

2.1. Scottish cohort 

The cohorts were constructed using the Scottish Diabetes Research 
Network dataset (SDRN-NDS [13]) that linked all fundus images be-
tween 2005 and 2017 from the Scottish Diabetic Retinopathy Screening 
(SDRS) programme to a national register of all people with diabetes in 
Scotland maintained by Scottish Care Information - Diabetes Care (SCI- 
DC) for primary care data. Data was also linked to Scottish Morbidity 
Records (SMR) for out- and in-patient records, and to the General Reg-
ister Office (GRO) for Scotland for death records. 

The start date and end date of this study were 1 January 2008 and 1 
January 2018. For each individual, the study entry was defined as the 
latest of: study start date, date of diabetes diagnosis, and date of 18th 
birthday or date of the individual’s first gradable diabetic retinopathy 
screening episode. An individual’s exit date from the study was defined 
as the earliest of study end date, date of death, date of incident CVD 
event or ceasing to be under observation in the national register. 

The photographic protocol used by SDRS specifies a single fundus 
photograph from each eye showing the macula and optic disc. A variety 
of non-mydriatic 45 degree fundus cameras were used. For each indi-
vidual, this study used only images from the baseline retinal screening 
which was defined as the nearest gradable screening episode before or 
on the entry date. 

CVD events, which constituted the gold-standard outcome for our 
risk prediction task, were obtained from SMR and GRO. We defined CVD 
events as any hospital admission or death due to the following condi-
tions; myocardial infarction, stroke, unstable angina, transient ischae-
mic attack, peripheral vascular disease or acute coronary heart disease, 
or the following procedures; coronary, carotid, or peripheral artery 
revascularisations or major associated amputation. International Clas-
sification of Diseases version 10 (ICD-10) codes and Office of Population 
Censuses and Surveys Classification of Interventions and Procedures 
(OPCS-4) codes within this definition are given in the supplementary 
materials. 

The inclusion criteria were T1DM diagnosed before 50 years of age 
and T2DM diagnosed between 18 and 100 years of age, and in both cases 
a gradable screening episode after the age of 12. Subjects were excluded 
if they had a CVD event prior to their study entry date. 

2.2. Candidate covariates 

For the T1DM cohort, we included risk factors reported in previous 
studies including the average HbA1c in the preceding years [14–16]. For 
the T2DM cohort, we used the same risk factors with the addition of 
ethnicity and prior drug counts. 

Baseline measurements and prescribing data were defined as prior 
measurements nearest to the entry date but no more than 24 months 
before that date. All measurements were defined at baseline apart from 
current age which was time-updated at the beginning of each person- 
time interval. Covariates with 60 % or more missingness were 
excluded from the analyses. Supplementary material contains further 
details about clinical covariate definitions. 

2.3. Deep learning model development 

Patients with bilateral gradable retinal fundus images at baseline 
were used to develop the DL model. For each cohort, we divided the 
dataset into a training set, validation set, and a test set by patient level in 
a 50:20:30 ratio. A total of 11,910 and 101,512 bilateral pairs of images 
were used in the training process of the DL model for T1DM and T2DM, 
respectively. Each set had a similar proportion of patient with CVD 
events. The outcomes of the DL model were whether there was a future 
CVD event, the current DR grade according to SDRS, estimated 
glomerular filtration rate (eGFR), and systolic blood pressure (SBP). For 
DL training, CVD followup was split into 5 year intervals - censored at 
study exit - and for each interval the outcome was a binary variable 
indicating if any CVD event was observed during the interval. Addi-
tionally, the DR outcome was the maximum retinopathy grade (Scottish 
grading scheme R0-R4) of both eyes; the eGFR outcome was a cate-
gorical variable with 4 values “<30 ml/min/1.73 m2 or RRT”, “30–60 
ml/min/1.73 m2”, “>60–90 ml/min/1.73 m2”, “>90 ml/min/1.73 
m2”; and the SBP outcome was a categorical variable with 3 values 
“<130 mmHg”, “130–160 mmHg”, “>160 mmHg”. A ResNet-101 
network architecture (pretrained on ImageNet) was trained to jointly 
predict the 4 outcomes. To provide a single prediction from bilateral 
fundus image inputs a multiple-instance learning (MIL) head, as used in 
[17], was added to the ResNet-101 immediately after the final global 
average pooling layer, replacing the final fully-connected layer. The MIL 
module used 4 heads each of dimension 128. Proceeding the MIL module 
were 4 linear layers, one for each of the 4 outcomes. The CVD outcome 
linear layer took as input both the MIL output and a binary indicator 
which was 0 for the first 5 year interval and 1 for the second 5 year 
interval for each patient. The network structure is illustrated in Fig. 1. 

The training objective for the network was a weighted sum of the 
cross-entropy loss for each of the 4 outcomes (CVD, DR, SBP, eGFR). The 
CVD loss had a weight of 1, and the remaining losses had a weight of 
0.02. The ResNet101 was trained using stochastic gradient descent with 
a momentum of 0.9 for 100 epochs. The initial learning rate was 0.02 
and was reduced at each subsequent epoch using a cosine-annealing 
learning rate schedule. Mini-batches of size 368 were equally balanced 
between examples with follow-up CVD and those without. Mixed- 
precision training was used on a DGX-1 machine using 8 32 GB 
V100s. Every 10 epochs a Poisson model including age, duration of 
diabetes, sex, and DL CVD predictions was fitted to 1 year person-time 
interval validation data and its log-likelihood (LL) calculated. The DL 
model weights at the epoch with the highest validation LL for the 
Poisson model became the final model weights. Fundus images were 
preprocessed to remove black borders and during training were 
augmented randomly by flip, rotation, resize, cropping, colour jitter, 
and gridded cutout. Processed images had dimension 448 × 448. 

The DL CVD prediction is then included in the baseline Poisson 
regression model containing known CVD risk factors. We compared the 
predictive performance between baseline models (a restricted model 
including age, diabetes duration, and sex and a full baseline using 
further known risk factors) and Poisson models that included the DL 
CVD predictor. The pictogram representing the training and evaluation 
pipeline is illustrated in Fig. 2. 

2.4. Statistical analyses 

Missing data were imputed [18,19]. An average over 10 imputation 
runs was used as the imputed values. Poisson risk prediction models to 
predict incident CVD were fit to observations constituting one year 
person-time intervals. Two baseline models were used: a restricted base 
Poisson model including the baseline and time-updated age, sex and 
baseline diabetes duration and an offset term for intervals in which 
censoring occurred and a full baseline model using forward selection to 
add further risk factors until the AIC did not fall by at least the number of 
extra parameters. Predictors with a skewed distribution (eGFR, Total: 
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HDL cholesterol ratio and BMI) were log-transformed. Quadratic and 
cubic terms were entered for age. Interactions between candidate 
covariates and age and sex were considered for inclusion in the model. 

Predictive performance was examined via the test set. Patients whose 
data were included in the training or validation procedures of the DL 
model were excluded from the test set. The increments in discrimination 
achieved by Poisson regression models that included DLP compared to 
the baseline models were quantified using the C-statistic (also known as 
the area under the receiver operator characteristic curve, or AUC) and 
the expected information for discrimination, Λ [20]. Increments in Λ are 
interpretable in absolute units whereas increments in C-statistic are not. 
The strength of evidence that the final model improved the predictive 
performance on top of the base model was assessed by the increment in 
test LL; a difference in test LL of 6.7 natural log units is asymptotically 
equivalent to a p-value < 0.005 for comparison of nested models [21]. 

3. Results 

Using Scottish health records and retinal images from 24,012 and 
202,843 people with T1DM and T2DM, respectively, from the SDRS 
programme, DLP of CVD and of the intermediate CVD risk factors eGFR, 
SBP, and DR were jointly trained. We evaluated if these DLPs could 
improve the predictive performance for CVD risk – in people with T1DM 

and T2DM when compared with Poisson regression models using clin-
ical covariates of known risk factors. Data between 2008 and 2018 
included 2,072 and 38,730 incident CVD events during 172,481 and 
1,273,785 person-years of follow up for T1DM and T2DM respectively. 

The most strongly associated risk factor of CVD was HbA1c for T1DM 
and age at study entry for T2DM. Supplementary Table B.2 shows many 
common risk factors - examined separately and adjusted for age, sex, and 
diabetes duration - display significant associations with CVD. Full details 
of missingness are shown in Supplementary Table B.3 where only 
albuminuria grade and HDL cholesterol had >10 % missingness. Sup-
plementary Table B.4 shows the age-standardised rates of CVD. 

There was a highly statistically-significant independent association 
between CVD DLP and incident CVD; standardised incidence rate ratios 
for the CVD DLP after adjusting for all clinical risk factors, estimated 
using data from the test set not used to train the DL model, were 1.14 (P 
= 3 × 10− 04 95 % CI (1.06, 1.23)) and 1.16 (P = 4 × 10− 33 95 % CI 
(1.13, 1.18)) in T1DM and T2DM cohorts respectively. 

These were similar in magnitude to the adjusted standardised IRRs 
for smoking in T1DM (Standardised IRR 1.19P = 2 × 10− 04 95 % CI 
(1.09, 1.31)) and smoking in T2DM (Standardised IRR 1.15P = 5 ×
10− 40 95 % CI (1.12, 1.17)). For comparison the standardised incidence 
rate ratios for HbA1c after adjusting for all clinical risk factors on the 
same data were 1.63 (P = 1 × 10− 23 95 % CI (1.48, 1.79)) and 1.14 (P =

Fig. 1. Diagram visualising the structure of the proposed deep learning model. A single ResNet101 is used to process both left and right fundus images. The 
ResNet101 outputs are then input into a Multiple Instance Learning module. Those outputs are then input to linear layers - one for each outcome - to determine the 
predictions for those outcomes. 

Fig. 2. Pictogram visualising the proposed deep learning training and evaluation pipeline.  

J. Mellor et al.                                                                                                                                                                                                                                   



International Journal of Medical Informatics 175 (2023) 105072

4

6 × 10− 45 95 % CI (1.12, 1.17)) in T1DM and T2DM cohorts respec-
tively. We found no interaction effect between follow-up time and the 
CVD DLP in either cohort. 

In the T1DM cohort, the addition of the CVD DLP to the restricted 
baseline model increased the LL by 8.5 natural log units, and the C- 
statistic increased from 0.816 to 0.820. For the full clinical model, the 
increment in LL when adding the CVD DLP was 6.7 natural log units and 
the C-statistic went from 0.820 to 0.822. Predictive performance of CVD 
in people with T2DM was lower than for T1DM. Addition of the CVD 
DLP to the restricted clinical model in the T2DM cohort increased the C- 
statistic from 0.707 to 0.709 and increased LL by 64.3 natural log units. 
For the full clinical model it increased the C-statistic from 0.709 to 0.711 
and increased LL by 51.1 natural log units. In both cases the CVD DLP 
increased test LL, while increase in C-statistic was small. Results are 
shown in Table 1. 

Despite clear association of DLPs with CVD, of similar magnitude to 
that seen for smoking, the addition of DLPs to baseline models did not 
increase C-statistic substantially even when stratifying either by age or 
by sex (see Supplementary Table B.5). Adding the eGFR, SBP, and DR 
DLPs individually to baseline models resulted in very similar small in-
creases in C-statistic (see Supplementary Table B.6). ROC curve com-
parisons between predictions with and without DL CVD are shown in 
Supplementary Fig. B.1 and calibration plots for prediction models using 
DL CVD are shown in Supplementary Fig. B.2. Further performance 
measures - including net classification improvement, sensitivity, speci-
ficity, and F1 score - comparing baseline models to models including DL 
CVD are shown Table 2. Supplementary Table B.7 shows the perfor-
mance of the full model excluding the clinical risk factors SBP, log eGFR, 
log total:HDL cholesterol ratio, and HbA1c (a “near-full” model) and the 
performance of this model with the addition of each of these risk factors 
separately and Supplementary Table B.8 gives standardised incident risk 
ratios adjusted for age, sex, and diabetes duration evaluated on the 
T1DM and T2DM datasets. 

4. Discussion 

We have shown that though DL scores are predictive of CVD in 
models with age, sex, and duration only, the increment in predictive 
performance when adding DL scores to a model with other clinical risk 
factors is small, although statistically significant. Stratification by age 
and sex did not show any subgroup in which the increment in predictive 
performance was larger. 

Our findings are consistent with previous studies. Poplin et al. [6] 
compared both the SCORE risk prediction model and a restricted pre-
diction model including age, sex, BMI, SBP and smoking status for 
prediction of 5 year major adverse cardiovascular events (MACE) in the 
UK Biobank (UKBB) cohort to models that included DL-based predictions 

from fundus images. They showed no evidence of predictive improve-
ment over SCORE by including DL predictions. Inclusion of DL pre-
dictions to their restricted model yielded a small increase in C-statistic 
from 0.72 to 0.73. Only 5 % of UKBB participants in the study had 
diabetes, whereas our study evaluated prediction in T1DM and T2DM 
cohorts. Since in diabetes the pathogenesis of CVD and retinopathy are 
partly shared (both being strongly influenced by glycaemia and blood 
pressure) we may expect that DL from fundus images are more predic-
tive in diabetes cohorts. However we do not find evidence for this. 

Readers may be surprised that the predictive performance of CVD 
risk models is relatively modest: even in T1DM, the best models have a 
C-statistic of only about 0.8, equivalent to information for discrimina-
tion, Λ, of only 1.0 bit. However, this is within the range that we would 
expect, given that CVD risk is determined by a relatively small number of 
independent risk factors of modest effect size. For established CVD risk 
factors such as blood cholesterol the rate ratio associated with increment 
of one standard deviation of a single risk factor is typically about 1.5, 
which corresponds approximately to an increment of 0.12 bits in Λ, or an 
increment from a baseline model with C-statistic of 0.75 (equivalent to Λ 
of 0.66 bits) to a C-statistic of 0.77. Thus even what are regarded as 
strong risk factors of CVD only provide a modest increment to prediction 
of CVD risk. For weaker risk factors with standardised rate ratios of 1.2 
the approximate increment in Λ is even smaller (0.02 bits) and the 
typical C-statistic after inclusion of this risk factor would still only be 
0.75. For stronger risk factors with standardised rate ratios of 2.5 
(increment of 0.61 bits) it would be from 0.75 to 0.83. Increments in C- 
statistic are not easily interpretable and so our paper uses increments in 
Λ. Information in retinal images relevant to CVD prediction is, in part, 
already captured by other risk factors and so, after adjustment for these 
risk factors, the standardised rate ratios for CVD DLP are similar to 
smoking status. A good clinical predictor may have a Λ of 3.0 bits 
(approximately a C-statistic of 0.93) [20]. Given our full baseline model 
for T1DM a single independent risk factor would require at least an Λ of 
1.74 bits corresponding to a standardised rate ratio of 4.7, well above 
that of many risk factors including CVD DLP. 

A major contribution of our analysis is that it has focused on dia-
betes, had a large sample size and a large number of incident events. To 
our knowledge this is the first study to examine the performance of DL 
models using fundus images applied to CVD risk in such cohorts. This 
study has been informed by the IJMI checklist [22]. There are limita-
tions to our study. We used only one image at entry whereas serial im-
ages are available from SDRS. A series of images may be more 
informative for DL prediction. For instance, monitoring of changes and 
their location (via image registration) may be more informative than is 
possible with a single fundus image. Second, our DL models were trained 
to predict incident CVD and just three CVD risk factors. This is similar to 
previous studies that trained DL models to predict multiple CVD risk 

Table 1 
Performance of baseline and deep learning models in Scottish T1DM and T2DM test datasets.  

Model T1DM T2DM 

C-statistic (AUC) Λ ΔLL C-statistic (AUC) Λ Δ LL 

Restricted baseline       
Restricted baseline 0.750(0.732,0.768) 0.69 0.0 0.671(0.666,0.676) 0.28 0.0 
+ all DLPs 0.767(0.749,0.784) 0.77 24.8 0.678(0.674,0.683) 0.31 167.5 
+ DL CVD 0.764(0.747,0.782) 0.74 23.3 0.678(0.673,0.683) 0.31 148.0 
+ HbA1c 0.795(0.778,0.811) 0.96 112.6 0.676(0.671,0.681) 0.31 131.9 
+ log eGFR 0.750(0.733,0.768) 0.70 5.1 0.673(0.668,0.678) 0.29 74.6 
+ SBP 0.751(0.733,0.769) 0.69 1.2 0.672(0.667,0.676) 0.29 12.0 
+ retinopathy 0.769(0.752,0.786) 0.77 39.6 0.675(0.670,0.680) 0.30 94.6 
+ log total:HDL cholesterol ratio 0.766(0.748,0.783) 0.77 36.5 0.677(0.672,0.681) 0.30 133.4 
Full baseline 

Full baseline  0.820(0.805,0.835)  1.26  0.0  0.709(0.705,0.714)  0.43  0.0 
+ all DLPs 0.821(0.806,0.837) 1.28 0.0 0.711(0.706,0.715) 0.44 56.6 
+ DL CVD 0.822(0.807,0.838) 1.28 6.7 0.711(0.706,0.715) 0.44 51.1 

Λ is the expected information for discrimination measured in bits. Δ LL is given with respect to the appropriate baseline model (that does not include any DLP). 95 % 
confidence intervals are given in brackets for C-statistic/AUC. 
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factors simultaneously [6]. In this study it is an example of multi-task 
learning where the CVD risk factors take the role of related auxiliary 
tasks to aid training of the primary task [23]. If tasks are similar but with 
independent signal noise, then learning the tasks jointly can increase the 
effective sample size due to the combined information in all tasks [24]. 
However, training against other CVD risk factors may lead to DL models 
which improve the overall predictive performance of CVD. Thirdly, the 
removal of ungradable images meant that the gradability of retinal 
images, which may be affected by ocular opacity, was not taken into 
account although there are known links between cataract and CVD [25]. 
We do not externally validate our models in this study, although we did 
not find evidence that improvements in prediction of CVD using DLPs 
were large enough to necessitate it at this time. Finally improvements to 
DL architecture within a similar DL pipeline to our own may provide 
performance improvements, but we expect they would not produce the 
standardised rate ratio we state above. 

There has been much optimism about the improvement DL using 
fundus images might make to risk prediction of complications of dia-
betes such as CVD [26]. Our findings suggest that although there is in-
formation relevant to CVD within fundus images increment in prediction 
for decision making is modest. However, small improvements in pre-
dictive performance of models may still be relevant for clinical trial 
cohort enrichment [27]. In this setting small improvements may sub-
stantially reduce the numbers who have to be randomized for the study 
design to have adequate statistical power. 

5. Summary table  

Question 

What was already known 
on the topic?  

- Deep Learning of fundus images can predict risk 
factors of CVD in a general cohort from UK Biobank  

- Increment in predictive performance above that of 
predictors using clinical risk factors is small in 
general populations 

What this study added to 
our knowledge?  

- We find strong evidence that fundus images contain 
information useful for CVD risk prediction in people 
with diabetes  

- Addition of a DL score to a model with clinical risk 
factors marginally improves CVD prediction for 
people with diabetes  

- The risk ratio of a DL score required to produce 
meaningful improvements in CVD risk prediction is 
large  
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[10] R.G. Barriada, O. Simó-Servat, A. Planas, et al., Deep learning of retinal imaging: a 
useful tool for coronary artery calcium score prediction in diabetic patients, Appl. 
Sci. 12 (2022) 1401. 

Table 2 
Continuous NRI, NRI, Sensitivity, Specificity, PPV, and F1 score when adding DL CVD to baseline models for Scottish T1DM and T2DM test datasets. We set the decision 
threshold as twice the mean person-interval risk with respect to the baseline models. 95 % confidence intervals are given for NRI.  

Model Continuous NRI NRI Sensitivity Specificity PPV F1 

T1DM Restricted model  – –  0.876  0.387  0.992  0.931 
T1DM Restricted + DL CVD  0.337 0.024(− 0.009,0.057)  0.884  0.403  0.993  0.935 
T1DM Full model  – –  0.864  0.557  0.994  0.925 
T1DM Full + DL CVD  0.085 0.002(− 0.015,0.021)  0.867  0.557  0.994  0.926 
T2DM Restricted model  – –  0.929  0.184  0.976  0.952 
T2DM Restricted + DL CVD  0.176 0.011(0.006,0.016)  0.921  0.203  0.976  0.948 
T2DM Full model  – –  0.908  0.273  0.978  0.942 
T2DM Full + DL CVD  0.122 0.006(0.002,0.01)  0.905  0.282  0.978  0.940  

J. Mellor et al.                                                                                                                                                                                                                                   

https://www.informationgovernance.scot.nhs.uk/pbpphsc/
https://doi.org/10.1016/j.ijmedinf.2023.105072
https://doi.org/10.1016/j.ijmedinf.2023.105072
https://doi.org/10.1001/jama.2014.16425
http://refhub.elsevier.com/S1386-5056(23)00090-4/h0010
http://refhub.elsevier.com/S1386-5056(23)00090-4/h0010
http://refhub.elsevier.com/S1386-5056(23)00090-4/h0010
https://doi.org/10.1136/bjophthalmol-2022-321225
https://doi.org/10.1136/bjophthalmol-2022-321225
http://refhub.elsevier.com/S1386-5056(23)00090-4/h0020
http://refhub.elsevier.com/S1386-5056(23)00090-4/h0020
http://refhub.elsevier.com/S1386-5056(23)00090-4/h0020
http://refhub.elsevier.com/S1386-5056(23)00090-4/h0025
http://refhub.elsevier.com/S1386-5056(23)00090-4/h0025
http://refhub.elsevier.com/S1386-5056(23)00090-4/h0025
http://refhub.elsevier.com/S1386-5056(23)00090-4/h0030
http://refhub.elsevier.com/S1386-5056(23)00090-4/h0030
http://refhub.elsevier.com/S1386-5056(23)00090-4/h0030
http://refhub.elsevier.com/S1386-5056(23)00090-4/h0035
http://refhub.elsevier.com/S1386-5056(23)00090-4/h0035
http://refhub.elsevier.com/S1386-5056(23)00090-4/h0035
http://refhub.elsevier.com/S1386-5056(23)00090-4/h0040
http://refhub.elsevier.com/S1386-5056(23)00090-4/h0040
http://refhub.elsevier.com/S1386-5056(23)00090-4/h0040
http://refhub.elsevier.com/S1386-5056(23)00090-4/h0045
http://refhub.elsevier.com/S1386-5056(23)00090-4/h0045
http://refhub.elsevier.com/S1386-5056(23)00090-4/h0045
http://refhub.elsevier.com/S1386-5056(23)00090-4/h0050
http://refhub.elsevier.com/S1386-5056(23)00090-4/h0050
http://refhub.elsevier.com/S1386-5056(23)00090-4/h0050


International Journal of Medical Informatics 175 (2023) 105072

6

[11] C.Y. Cheung, D. Xu, C.-Y. Cheng, et al., A deep-learning system for the assessment 
of cardiovascular disease risk via the measurement of retinal-vessel calibre, Nat. 
Biomed. Eng. 5 (2021) 498–508. 

[12] A.R. Rudnicka, R. Welikala, S. Barman, et al., Artificial intelligence-enabled retinal 
vasculometry for prediction of circulatory mortality, myocardial infarction and 
stroke, Br. J. Ophthalmol. (2022), https://doi.org/10.1136/bjo-2022-321842. 

[13] S.J. McGurnaghan, L.A.K. Blackbourn, T.M. Caparrotta, et al., Cohort profile: the 
Scottish diabetes research network national diabetes cohort a population-based 
cohort of people with diabetes in Scotland, BMJ Open (2022) 12, https://doi.org/ 
10.1136/bmjopen-2022-063046. 

[14] J. Hippisley-Cox, C. Coupland, Y. Vinogradova, et al., Predicting cardiovascular 
risk in England and Wales: prospective derivation and validation of QRISK2, BMJ 
336 (2008) 1475–1482, https://doi.org/10.1136/bmj.39609.449676.25. 

[15] A. Rawshani, A. Rawshani, S. Franzén, et al., Mortality and Cardiovascular Disease 
in Type 1 and Type 2 Diabetes. n.d. 

[16] S.J. McGurnaghan, P.M. McKeigue, S.H. Read, et al., Development and validation 
of a cardiovascular risk prediction model in type 1 diabetes, Diabetologia 64 
(2021) 2001–2011. 

[17] M. Ilse, J. Tomczak, M. Welling, Attention-based deep multiple instance learning, 
in: J. Dy, A. Krause (Eds.), Proceedings of the 35th International Conference on 
Machine Learning, Vol. 80, PMLR, 2018, pp. 2127–2136. 

[18] J. Honaker, G. King, M. Blackwell, Amelia II: a program for missing data, J. Stat. 
Softw. 45 (2011) 1–47. 

[19] R Core Team, R: A language and environment for statistical computing, 2015. 
[20] P. McKeigue, Quantifying performance of a diagnostic test as the expected 

information for discrimination: relation to the C-statistic, Stat. Methods Med. Res. 
28 (2019) 1841–1851, doi: 10.1177/0962280218776989. 

[21] M. Stone, An asymptotic equivalence of choice of model by cross-validation and 
Akaike’s criterion, J. Roy. Stat. Soc.: Ser. B (Methodol.) 39 (1977) 44–47, https:// 
doi.org/10.1111/j.2517- 6161.1977.tb01603.x. 

[22] F. Cabitza, A. Campagner, The need to separate the wheat from the chaff in medical 
informatics: introducing a comprehensive checklist for the (self)-assessment of 
medical AI studies, Int. J. Med. Inf. 153 (2021), 104510, https://doi.org/10.1016/ 
j.ijmedinf.2021.104510. 

[23] C. Wang, J. Shao, X. Xu, et al., DeepLN: a multi-task AI tool to predict the imaging 
characteristics, malignancy and pathological subtypes in CT-detected pulmonary 
nodules, Front. Oncol. (2022) 12, https://doi.org/10.3389/fonc.2022.683792. 

[24] R. Caruana, Multitask learning, Mach. Learn. 28 (1997) 41–75. 
[25] C. Younan, P. Mitchell, R. Cumming, et al., Cardiovascular disease, vascular risk 

factors and the incidence of cataract and cataract surgery: the Blue Mountains eye 
study, Ophthalmic Epidemiol. 10 (2003) 227–240. 

[26] D.Y.L. Wong, M.C. Lam, A. Ran, et al., Artificial intelligence in retinal imaging for 
cardiovascular disease prediction: current trends and future directions, Curr. Opin. 
Ophthalmol. 33 (2022) 440–446. 

[27] N. Simon, R. Simon, Adaptive enrichment designs for clinical trials, Biostatistics 14 
(2013) 613–625, https://doi.org/10.1093/biostatistics/kxt010. 

J. Mellor et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S1386-5056(23)00090-4/h0055
http://refhub.elsevier.com/S1386-5056(23)00090-4/h0055
http://refhub.elsevier.com/S1386-5056(23)00090-4/h0055
https://doi.org/10.1136/bjo-2022-321842
https://doi.org/10.1136/bmjopen-2022-063046
https://doi.org/10.1136/bmjopen-2022-063046
https://doi.org/10.1136/bmj.39609.449676.25
http://refhub.elsevier.com/S1386-5056(23)00090-4/h0080
http://refhub.elsevier.com/S1386-5056(23)00090-4/h0080
http://refhub.elsevier.com/S1386-5056(23)00090-4/h0080
http://refhub.elsevier.com/S1386-5056(23)00090-4/h0090
http://refhub.elsevier.com/S1386-5056(23)00090-4/h0090
https://doi.org/10.1111/j.2517- 6161.1977.tb01603.x
https://doi.org/10.1111/j.2517- 6161.1977.tb01603.x
https://doi.org/10.1016/j.ijmedinf.2021.104510
https://doi.org/10.1016/j.ijmedinf.2021.104510
https://doi.org/10.3389/fonc.2022.683792
http://refhub.elsevier.com/S1386-5056(23)00090-4/h0120
http://refhub.elsevier.com/S1386-5056(23)00090-4/h0125
http://refhub.elsevier.com/S1386-5056(23)00090-4/h0125
http://refhub.elsevier.com/S1386-5056(23)00090-4/h0125
http://refhub.elsevier.com/S1386-5056(23)00090-4/h0130
http://refhub.elsevier.com/S1386-5056(23)00090-4/h0130
http://refhub.elsevier.com/S1386-5056(23)00090-4/h0130
https://doi.org/10.1093/biostatistics/kxt010

	Can deep learning on retinal images augment known risk factors for cardiovascular disease prediction in diabetes? A prospec ...
	1 Introduction
	2 Material and methods
	2.1 Scottish cohort
	2.2 Candidate covariates
	2.3 Deep learning model development
	2.4 Statistical analyses

	3 Results
	4 Discussion
	5 Summary table
	Author statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Appendix A Supplementary material
	References


